Subversion Repositories FlightCtrl

Rev

Rev 1635 | Rev 1775 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <stdlib.h>
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
 
55
#include "rc.h"
56
#include "controlMixer.h"
57
#include "configuration.h"
58
 
59
// The channel array is 1-based. The 0th entry is not used.
60
volatile int16_t PPM_in[MAX_CHANNELS];
61
volatile int16_t PPM_diff[MAX_CHANNELS];
62
volatile uint8_t NewPpmData = 1;
63
volatile int16_t RC_Quality = 0;
64
int16_t RC_PRTY[4];
65
 
66
int16_t stickOffsetPitch = 0, stickOffsetRoll = 0;
67
 
68
/***************************************************************
69
 *  16bit timer 1 is used to decode the PPM-Signal            
70
 ***************************************************************/
71
void RC_Init (void) {
72
  uint8_t sreg = SREG;
73
 
74
  // disable all interrupts before reconfiguration
75
  cli();
76
 
77
  // PPM-signal is connected to the Input Capture Pin (PD6) of timer 1
78
  DDRD &= ~(1<<DDD6);
79
  PORTD |= (1<<PORTD6);
80
 
81
  // Channel 5,6,7 is decoded to servo signals at pin PD5 (J3), PD4(J4), PD3(J5)
82
  // set as output
83
  DDRD |= /*(1<<DDD5)|*/(1<<DDD4);
84
  // low level
85
  PORTD &= ~(/*(1<<PORTD5)|*/(1<<PORTD4));
86
 
87
  // PD3 can't be used if 2nd UART is activated
88
  // because TXD1 is at that port
89
  if(CPUType != ATMEGA644P) {
90
    DDRD |= (1<<PORTD3);
91
    PORTD &= ~(1<<PORTD3);
92
  }
93
 
94
  // Timer/Counter1 Control Register A, B, C
95
 
96
  // Normal Mode (bits: WGM13=0, WGM12=0, WGM11=0, WGM10=0)
97
  // Compare output pin A & B is disabled (bits: COM1A1=0, COM1A0=0, COM1B1=0, COM1B0=0)
98
  // Set clock source to SYSCLK/64 (bit: CS12=0, CS11=1, CS10=1)
99
  // Enable input capture noise cancler (bit: ICNC1=1)
100
  // Trigger on positive edge of the input capture pin (bit: ICES1=1),
101
  // Therefore the counter incremets at a clock of 20 MHz/64 = 312.5 kHz or 3.2µs
102
  // The longest period is 0xFFFF / 312.5 kHz = 0.209712 s.
103
  TCCR1A &= ~((1<<COM1A1)|(1<<COM1A0)|(1<<COM1B1)|(1<<COM1B0)|(1<<WGM11)|(1<<WGM10));
104
  TCCR1B &= ~((1<<WGM13)|(1<<WGM12)|(1<<CS12));
105
  TCCR1B |= (1<<CS11)|(1<<CS10)|(1<<ICES1)|(1<<ICNC1);
106
  TCCR1C &= ~((1<<FOC1A)|(1<<FOC1B));
107
 
108
  // Timer/Counter1 Interrupt Mask Register
109
 
110
  // Enable Input Capture Interrupt (bit: ICIE1=1)
111
  // Disable Output Compare A & B Match Interrupts (bit: OCIE1B=0, OICIE1A=0)
112
  // Enable Overflow Interrupt (bit: TOIE1=0)
113
  TIMSK1 &= ~((1<<OCIE1B)|(1<<OCIE1A)|(1<<TOIE1));
114
  TIMSK1 |= (1<<ICIE1);
115
 
116
  RC_Quality = 0;
117
 
118
  SREG = sreg;
119
}
120
 
121
/********************************************************************/
122
/*         Every time a positive edge is detected at PD6            */
123
/********************************************************************/
124
/*                               t-Frame
125
                                 <----------------------------------------------------------------------->
126
                                 ____   ______   _____   ________                ______    sync gap      ____
127
                                 |    | |      | |     | |        |              |      |                |
128
                                 |    | |      | |     | |        |              |      |                |
1634 - 129
                              ___|    |_|      |_|     |_|        |_.............|      |________________|
1612 dongfang 130
                                 <-----><-------><------><-------->              <------>                <---
131
                                 t0       t1      t2       t4                     tn                     t0
132
 
133
                                 The PPM-Frame length is 22.5 ms.
134
                                 Channel high pulse width range is 0.7 ms to 1.7 ms completed by an 0.3 ms low pulse.
135
                                 The mininimum time delay of two events coding a channel is ( 0.7 + 0.3) ms = 1 ms.
136
                                 The maximum time delay of two events coding a chanel is ( 1.7 + 0.3) ms = 2 ms.
137
                                 The minimum duration of all channels at minimum value is  8 * 1 ms = 8 ms.
138
                                 The maximum duration of all channels at maximum value is  8 * 2 ms = 16 ms.
139
                                 The remaining time of (22.5 - 8 ms) ms = 14.5 ms  to (22.5 - 16 ms) ms = 6.5 ms is
140
                                 the syncronization gap.
141
*/
142
ISR(TIMER1_CAPT_vect) { // typical rate of 1 ms to 2 ms
143
  int16_t signal = 0, tmp;
144
  static int16_t index;
145
  static uint16_t oldICR1 = 0;
146
 
147
  // 16bit Input Capture Register ICR1 contains the timer value TCNT1
148
  // at the time the edge was detected
149
 
150
  // calculate the time delay to the previous event time which is stored in oldICR1
151
  // calculatiing the difference of the two uint16_t and converting the result to an int16_t
152
  // implicit handles a timer overflow 65535 -> 0 the right way.
153
  signal = (uint16_t) ICR1 - oldICR1;
154
  oldICR1 = ICR1;
155
 
156
  //sync gap? (3.52 ms < signal < 25.6 ms)
157
  if((signal > 1100) && (signal < 8000)) {
158
    // if a sync gap happens and there where at least 4 channels decoded before
159
    // then the NewPpmData flag is reset indicating valid data in the PPM_in[] array.
160
    if(index >= 4) {
161
      NewPpmData = 0;  // Null means NewData for the first 4 channels
162
    }
163
    // synchronize channel index
164
    index = 1;
165
  } else { // within the PPM frame
166
    if(index < MAX_CHANNELS-1) // PPM24 supports 12 channels
167
      {
168
        // check for valid signal length (0.8 ms < signal < 2.1984 ms)
169
        // signal range is from 1.0ms/3.2us = 312 to 2.0ms/3.2us = 625
170
        if((signal > 250) && (signal < 687))
171
          {
172
            // shift signal to zero symmetric range  -154 to 159
173
            signal -= 466; // offset of 1.4912 ms ??? (469 * 3.2µs = 1.5008 ms)
174
            // check for stable signal
175
            if(abs(signal - PPM_in[index]) < 6) {
176
              if(RC_Quality < 200) RC_Quality +=10;
177
              else RC_Quality = 200;
178
            }
179
            // calculate exponential history for signal
180
            tmp = (3 * PPM_in[index] + signal) / 4;
181
            if(tmp > signal + 1) tmp--; else
182
              if(tmp < signal-1) tmp++;
183
            // calculate signal difference on good signal level
184
            if(RC_Quality >= 195)  
185
              PPM_diff[index] = ((tmp - PPM_in[index]) / 3) * 3; // cut off lower 3 bit for nois reduction
186
            else PPM_diff[index] = 0;
187
            PPM_in[index] = tmp; // update channel value
188
          }
189
        index++; // next channel
190
        // demux sum signal for channels 5 to 7 to J3, J4, J5
191
        // TODO: General configurability of this R/C channel forwarding. Or remove it completely - the
192
        // channels are usually available at the receiver anyway.
193
        // if(index == 5) J3HIGH; else J3LOW;
194
        // if(index == 6) J4HIGH; else J4LOW;
195
        // if(CPUType != ATMEGA644P) // not used as TXD1
196
        //  {
197
        //    if(index == 7) J5HIGH; else J5LOW;
198
        //  }
199
      }
200
  }
201
}
202
 
203
#define RCChannel(dimension) PPM_in[staticParams.ChannelAssignment[dimension]]
204
#define RCDiff(dimension) PPM_diff[staticParams.ChannelAssignment[dimension]]
205
 
206
/*
207
 * This must be called (as the only thing) for each control loop cycle (488 Hz).
208
 */
209
void RC_update() {
210
  int16_t tmp1, tmp2;
211
  if(RC_Quality) {
212
    RC_Quality--;
213
    if (NewPpmData-- == 0) {
1645 - 214
      RC_PRTY[CONTROL_PITCH]    = RCChannel(CH_PITCH) * staticParams.StickP - stickOffsetPitch + RCDiff(CH_PITCH) * staticParams.StickD;
215
      RC_PRTY[CONTROL_ROLL]     = RCChannel(CH_ROLL)  * staticParams.StickP - stickOffsetRoll  + RCDiff(CH_ROLL)  * staticParams.StickD;
1635 - 216
      RC_PRTY[CONTROL_THROTTLE] = RCChannel(CH_THROTTLE) + PPM_diff[staticParams.ChannelAssignment[CH_THROTTLE]] * dynamicParams.UserParams[3] + 120;
1612 dongfang 217
      if (RC_PRTY[CONTROL_THROTTLE] < 0) RC_PRTY[CONTROL_THROTTLE] = 0; // Throttle is non negative.
218
      tmp1 = -RCChannel(CH_YAW) - RCDiff(CH_YAW);
219
      // exponential stick sensitivity in yawring rate
220
      tmp2 = (int32_t) staticParams.StickYawP * ((int32_t)tmp1 * abs(tmp1)) / 512L; // expo  y = ax + bx^2
221
      tmp2 += (staticParams.StickYawP * tmp1) / 4;
222
      RC_PRTY[CONTROL_YAW] = tmp2;
223
    }
224
  } else { // Bad signal
225
    RC_PRTY[CONTROL_PITCH] = RC_PRTY[CONTROL_ROLL] = RC_PRTY[CONTROL_THROTTLE] = RC_PRTY[CONTROL_YAW] = 0;
226
  }
227
}
228
 
229
/*
230
 * Get Pitch, Roll, Throttle, Yaw values
231
 */
232
int16_t* RC_getPRTY(void) {
233
  return RC_PRTY;
234
}
235
 
236
/*
237
 * Get other channel value
238
 */
239
int16_t RC_getVariable(uint8_t varNum) {
240
  if (varNum < 4)
241
    // 0th variable is 5th channel (1-based) etc.
242
    return RCChannel(varNum + 5);
243
  /*
244
   * Let's just say:
245
   * The RC variable 4 is hardwired to channel 5
246
   * The RC variable 5 is hardwired to channel 6
247
   * The RC variable 6 is hardwired to channel 7
248
   * The RC variable 7 is hardwired to channel 8
249
   * Alternatively, one could bind them to channel (4 + varNum) - or whatever...
250
   */
251
  return PPM_in[varNum + 1];
252
}
253
 
254
uint8_t RC_getSignalQuality(void) {
255
  if (RC_Quality >= 160)
256
    return SIGNAL_GOOD;
257
  if (RC_Quality >= 140)
258
    return SIGNAL_OK;
259
  if (RC_Quality >= 120)
260
    return SIGNAL_BAD;
261
  return SIGNAL_LOST;
262
}
263
 
264
/*
265
 * To should fired only when the right stick is in the center position.
266
 * This will cause the value of pitch and roll stick to be adjusted
267
 * to zero (not just to near zero, as per the assumption in rc.c
268
 * about the rc signal. I had values about 50..70 with a Futaba
269
 * R617 receiver.) This calibration is not strictly necessary, but
270
 * for control logic that depends on the exact (non)center position
271
 * of a stick, it may be useful.
272
 */
273
void RC_calibrate(void) {
274
  if (staticParams.GlobalConfig & CFG_HEADING_HOLD) {
275
    // In HH, it s OK to trim the R/C. The effect should not be conteracted here.
276
    stickOffsetPitch = stickOffsetRoll = 0;
277
  } else {
1645 - 278
    stickOffsetPitch = RCChannel(CH_PITCH) * staticParams.StickP;
279
    stickOffsetRoll = RCChannel(CH_ROLL)   * staticParams.StickP;
1612 dongfang 280
  }
281
}
282
 
283
#define COMMAND_THRESHOLD 85
1635 - 284
#define COMMAND_CHANNEL_VERTICAL CH_THROTTLE
285
#define COMMAND_CHANNEL_HORIZONTAL CH_YAW
286
 
1612 dongfang 287
uint8_t RC_getCommand(void) {
1635 - 288
  if(RCChannel(COMMAND_CHANNEL_VERTICAL) > COMMAND_THRESHOLD) {
289
    // vertical is up
290
    if(RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
1612 dongfang 291
      return COMMAND_GYROCAL;
1635 - 292
    if(RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
1612 dongfang 293
      return COMMAND_ACCCAL;
294
    return COMMAND_NONE;
1635 - 295
  } else if(RCChannel(COMMAND_CHANNEL_VERTICAL) < -COMMAND_THRESHOLD) {
296
    // vertical is down
297
    if(RCChannel(COMMAND_CHANNEL_HORIZONTAL) > COMMAND_THRESHOLD)
1612 dongfang 298
      return COMMAND_STOP;
1635 - 299
    if(RCChannel(COMMAND_CHANNEL_HORIZONTAL) < -COMMAND_THRESHOLD)
1612 dongfang 300
      return COMMAND_START;
301
    return COMMAND_NONE;
302
  } else {
1635 - 303
    // vertical is around center
1612 dongfang 304
    return COMMAND_NONE;
305
  }
306
}
307
 
308
/*
309
 * Command arguments on R/C:
310
 * 2--3--4
311
 * |     |  +
312
 * 1  0  5  ^ 0
313
 * |     |  |  
314
 * 8--7--6
315
 *    
316
 * + <--
317
 *    0
318
 *
319
 * Not in any of these positions: 0
320
 */
1635 - 321
 
1612 dongfang 322
#define ARGUMENT_THRESHOLD 70
1635 - 323
#define ARGUMENT_CHANNEL_VERTICAL CH_PITCH
324
#define ARGUMENT_CHANNEL_HORIZONTAL CH_ROLL
325
 
1612 dongfang 326
uint8_t RC_getArgument(void) {
1635 - 327
  if(RCChannel(ARGUMENT_CHANNEL_VERTICAL) > ARGUMENT_THRESHOLD) {
328
    // vertical is up
329
    if(RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
1612 dongfang 330
      return 2;
1635 - 331
    if(RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
1612 dongfang 332
      return 4;
333
    return 3;
1635 - 334
  } else if(RCChannel(ARGUMENT_CHANNEL_VERTICAL) < -ARGUMENT_THRESHOLD) {
335
    // vertical is down
336
    if(RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
1612 dongfang 337
      return 8;
1635 - 338
    if(RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
1612 dongfang 339
      return 6;
340
    return 7;
341
  } else {
1635 - 342
    // vertical is around center
343
    if(RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) > ARGUMENT_THRESHOLD)
1612 dongfang 344
      return 1;
1635 - 345
    if(RCChannel(ARGUMENT_CHANNEL_HORIZONTAL) < -ARGUMENT_THRESHOLD)
1612 dongfang 346
      return 5;
347
    return 0;
348
  }
349
}
350
 
351
uint8_t RC_getLooping(uint8_t looping) {
352
  //  static uint8_t looping = 0;
353
 
354
  if(RCChannel(CH_ROLL) > staticParams.LoopThreshold && staticParams.BitConfig & CFG_LOOP_LEFT) {
355
    looping |= (LOOPING_ROLL_AXIS | LOOPING_LEFT);
356
  } else if((looping & LOOPING_LEFT) && RCChannel(CH_ROLL) < staticParams.LoopThreshold - staticParams.LoopHysteresis) {
357
    looping &= (~(LOOPING_ROLL_AXIS | LOOPING_LEFT));
358
  }
359
 
360
  if(RCChannel(CH_ROLL) < -staticParams.LoopThreshold && staticParams.BitConfig & CFG_LOOP_RIGHT) {
361
    looping |= (LOOPING_ROLL_AXIS | LOOPING_RIGHT);
362
  } else if((looping & LOOPING_RIGHT) && RCChannel(CH_ROLL) > -staticParams.LoopThreshold - staticParams.LoopHysteresis) {
363
    looping &= (~(LOOPING_ROLL_AXIS | LOOPING_RIGHT));
364
  }
365
 
366
  if(RCChannel(CH_PITCH) > staticParams.LoopThreshold && staticParams.BitConfig & CFG_LOOP_UP) {
367
    looping |= (LOOPING_PITCH_AXIS | LOOPING_UP);
368
  } else if((looping & LOOPING_UP) && RCChannel(CH_PITCH) < staticParams.LoopThreshold - staticParams.LoopHysteresis) {
369
    looping &= (~(LOOPING_PITCH_AXIS | LOOPING_UP));
370
  }
371
 
372
  if(RCChannel(CH_PITCH) < -staticParams.LoopThreshold && staticParams.BitConfig & CFG_LOOP_DOWN) {
373
    looping |= (LOOPING_PITCH_AXIS | LOOPING_DOWN);
374
  } else if((looping & LOOPING_DOWN) && RCChannel(CH_PITCH) > -staticParams.LoopThreshold - staticParams.LoopHysteresis) {
375
    looping &= (~(LOOPING_PITCH_AXIS | LOOPING_DOWN));
376
  }
377
 
378
  return looping;
379
}
380
 
381
/*
382
 * Abstract controls are not used at the moment.
383
 t_control rc_control = {
384
 RC_getPitch,
385
 RC_getRoll,
386
 RC_getYaw,
387
 RC_getThrottle,
388
 RC_getSignalQuality,
389
 RC_calibrate
390
 };
391
*/