Subversion Repositories FlightCtrl

Rev

Rev 1979 | Rev 2018 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
#ifndef _ANALOG_H
2
#define _ANALOG_H
3
#include <inttypes.h>
1965 - 4
#include "configuration.h"
1612 dongfang 5
 
6
/*
1645 - 7
 * How much low pass filtering to apply for gyro_PID.
1612 dongfang 8
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
9
 * Temporarily replaced by userparam-configurable variable.
10
 */
1646 - 11
// #define GYROS_PID_FILTER 1
1612 dongfang 12
 
13
/*
1645 - 14
 * How much low pass filtering to apply for gyro_ATT.
1612 dongfang 15
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
16
 * Temporarily replaced by userparam-configurable variable.
17
 */
1646 - 18
// #define GYROS_ATT_FILTER 1
1612 dongfang 19
// Temporarily replaced by userparam-configurable variable.
1646 - 20
// #define ACC_FILTER 4
1612 dongfang 21
 
22
/*
1821 - 23
 About setting constants for different gyros:
24
 Main parameters are positive directions and voltage/angular speed gain.
25
 The "Positive direction" is the rotation direction around an axis where
26
 the corresponding gyro outputs a voltage > the no-rotation voltage.
27
 A gyro is considered, in this code, to be "forward" if its positive
28
 direction is:
29
 - Nose down for pitch
30
 - Left hand side down for roll
31
 - Clockwise seen from above for yaw.
32
 Declare the GYRO_REVERSE_YAW, GYRO_REVERSE_ROLL and
33
 GYRO_REVERSE_PITCH #define's if the respective gyros are reverse.
34
 
35
 Setting gyro gain correctly: All sensor measurements in analog.c take
36
 place in a cycle, each cycle comprising all sensors. Some sensors are
37
 sampled more than ones, and the results added. The pitch and roll gyros
38
 are sampled 4 times and the yaw gyro 2 times in the original H&I V0.74
39
 code.
40
 In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0)
41
 or 4 (other versions), offset to zero, low pass filtered and then assigned
42
 to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or
43
 roll.
44
 So:
45
 
46
 gyro = V * (ADCValue1 + ADCValue2 + ADCValue3 + ADCValue4),
47
 where V is 2 for FC1.0 and 4 for all others.
48
 
49
 Assuming constant ADCValue, in the H&I code:
1612 dongfang 50
 
1821 - 51
 gyro = I * ADCValue.
1612 dongfang 52
 
1821 - 53
 where I is 8 for FC1.0 and 16 for all others.
1612 dongfang 54
 
1821 - 55
 The relation between rotation rate and ADCValue:
56
 ADCValue [units] =
57
 rotational speed [deg/s] *
58
 gyro sensitivity [V / deg/s] *
59
 amplifier gain [units] *
60
 1024 [units] /
61
 3V full range [V]
1612 dongfang 62
 
1821 - 63
 or: H is the number of steps the ADC value changes with,
64
 for a 1 deg/s change in rotational velocity:
65
 H = ADCValue [units] / rotation rate [deg/s] =
66
 gyro sensitivity [V / deg/s] *
67
 amplifier gain [units] *
68
 1024 [units] /
69
 3V full range [V]
1612 dongfang 70
 
1821 - 71
 Examples:
72
 FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7:
73
 H = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s).
74
 FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers:
75
 H = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s).
76
 My InvenSense copter has 2mV/deg/s gyros and no amplifiers:
77
 H = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s)
78
 (only about half as sensitive as V1.3. But it will take about twice the
79
 rotation rate!)
1612 dongfang 80
 
1821 - 81
 All together: gyro = I * H * rotation rate [units / (deg/s)].
82
 */
1612 dongfang 83
 
84
/*
85
 * A factor that the raw gyro values are multiplied by,
1645 - 86
 * before being filtered and passed to the attitude module.
1612 dongfang 87
 * A value of 1 would cause a little bit of loss of precision in the
88
 * filtering (on the other hand the values are so noisy in flight that
89
 * it will not really matter - but when testing on the desk it might be
90
 * noticeable). 4 is fine for the default filtering.
1645 - 91
 * Experiment: Set it to 1.
1612 dongfang 92
 */
1874 - 93
#define GYRO_FACTOR_PITCHROLL 1
1612 dongfang 94
 
95
/*
96
 * How many samples are summed in one ADC loop, for pitch&roll and yaw,
97
 * respectively. This is = the number of occurences of each channel in the
98
 * channelsForStates array in analog.c.
99
 */
100
#define GYRO_SUMMATION_FACTOR_PITCHROLL 4
101
#define GYRO_SUMMATION_FACTOR_YAW 2
102
 
1646 - 103
#define ACC_SUMMATION_FACTOR_PITCHROLL 2
104
#define ACC_SUMMATION_FACTOR_Z 1
105
 
1612 dongfang 106
/*
1821 - 107
 Integration:
108
 The HiResXXXX values are divided by 8 (in H&I firmware) before integration.
109
 In the Killagreg rewrite of the H&I firmware, the factor 8 is called
110
 HIRES_GYRO_AMPLIFY. In this code, it is called HIRES_GYRO_INTEGRATION_FACTOR,
111
 and care has been taken that all other constants (gyro to degree factor, and
112
 180 degree flip-over detection limits) are corrected to it. Because the
113
 division by the constant takes place in the flight attitude code, the
114
 constant is there.
1612 dongfang 115
 
1821 - 116
 The control loop executes every 2ms, and for each iteration
117
 gyro_ATT[PITCH/ROLL] is added to gyroIntegral[PITCH/ROLL].
118
 Assuming a constant rotation rate v and a zero initial gyroIntegral
119
 (for this explanation), we get:
1612 dongfang 120
 
1821 - 121
 gyroIntegral =
122
 N * gyro / HIRES_GYRO_INTEGRATION_FACTOR =
123
 N * I * H * v / HIRES_GYRO_INTEGRATION_FACTOR
1612 dongfang 124
 
1821 - 125
 where N is the number of summations; N = t/2ms.
1612 dongfang 126
 
1821 - 127
 For one degree of rotation: t*v = 1:
1612 dongfang 128
 
1821 - 129
 gyroIntegralXXXX = t/2ms * I * H * 1/t = INTEGRATION_FREQUENCY * I * H / HIRES_GYRO_INTEGRATION_FACTOR.
1612 dongfang 130
 
1821 - 131
 This number (INTEGRATION_FREQUENCY * I * H) is the integral-to-degree factor.
132
 
133
 Examples:
134
 FC1.3: I=2, H=1.304, HIRES_GYRO_INTEGRATION_FACTOR=8 --> integralDegreeFactor = 1304
135
 FC2.0: I=2, H=2.048, HIRES_GYRO_INTEGRATION_FACTOR=13 --> integralDegreeFactor = 1260
136
 My InvenSense copter: HIRES_GYRO_INTEGRATION_FACTOR=4, H=0.6827 --> integralDegreeFactor = 1365
137
 */
138
 
1612 dongfang 139
/*
1645 - 140
 * The value of gyro[PITCH/ROLL] for one deg/s = The hardware factor H * the number of samples * multiplier factor.
1612 dongfang 141
 * Will be about 10 or so for InvenSense, and about 33 for ADXRS610.
142
 */
143
#define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_PITCHROLL * GYRO_FACTOR_PITCHROLL)
144
#define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_YAW)
145
 
146
/*
1645 - 147
 * Gyro saturation prevention.
148
 */
149
// How far from the end of its range a gyro is considered near-saturated.
150
#define SENSOR_MIN_PITCHROLL 32
151
// Other end of the range (calculated)
152
#define SENSOR_MAX_PITCHROLL (GYRO_SUMMATION_FACTOR_PITCHROLL * 1023 - SENSOR_MIN_PITCHROLL)
153
// Max. boost to add "virtually" to gyro signal at total saturation.
154
#define EXTRAPOLATION_LIMIT 2500
155
// Slope of the boost (calculated)
156
#define EXTRAPOLATION_SLOPE (EXTRAPOLATION_LIMIT/SENSOR_MIN_PITCHROLL)
157
 
158
/*
1612 dongfang 159
 * This value is subtracted from the gyro noise measurement in each iteration,
160
 * making it return towards zero.
161
 */
162
#define GYRO_NOISE_MEASUREMENT_DAMPING 5
163
 
1645 - 164
#define PITCH 0
165
#define ROLL 1
1646 - 166
#define YAW 2
167
#define Z 2
1612 dongfang 168
/*
169
 * The values that this module outputs
1645 - 170
 * These first 2 exported arrays are zero-offset. The "PID" ones are used
171
 * in the attitude control as rotation rates. The "ATT" ones are for
172
 * integration to angles. For the same axis, the PID and ATT variables
173
 * generally have about the same values. There are just some differences
174
 * in filtering, and when a gyro becomes near saturated.
175
 * Maybe this distinction is not really necessary.
1612 dongfang 176
 */
2015 - 177
extern int16_t gyro_PID[2];
178
extern int16_t gyro_ATT[2];
179
extern int16_t gyroD[2];
180
extern int16_t yawGyro;
1612 dongfang 181
extern volatile uint16_t ADCycleCount;
2015 - 182
extern int16_t UBat;
1612 dongfang 183
 
1775 - 184
// 1:11 voltage divider, 1024 counts per 3V, and result is divided by 3.
1869 - 185
#define UBAT_AT_5V (int16_t)((5.0 * (1.0/11.0)) * 1024 / (3.0 * 3))
1775 - 186
 
1969 - 187
extern sensorOffset_t gyroOffset;
188
extern sensorOffset_t accOffset;
189
extern sensorOffset_t gyroAmplifierOffset;
1960 - 190
 
1612 dongfang 191
/*
192
 * This is not really for external use - but the ENC-03 gyro modules needs it.
193
 */
2015 - 194
//extern volatile int16_t rawGyroSum[3];
1612 dongfang 195
 
196
/*
1645 - 197
 * The acceleration values that this module outputs. They are zero based.
1612 dongfang 198
 */
2015 - 199
extern int16_t acc[3];
200
extern int16_t filteredAcc[3];
1872 - 201
// extern volatile int32_t stronglyFilteredAcc[3];
1612 dongfang 202
 
203
/*
1775 - 204
 * Diagnostics: Gyro noise level because of motor vibrations. The variables
205
 * only really reflect the noise level when the copter stands still but with
206
 * its motors running.
207
 */
2015 - 208
extern uint16_t gyroNoisePeak[3];
209
extern uint16_t accNoisePeak[3];
1775 - 210
 
211
/*
212
 * Air pressure.
1961 - 213
 * The sensor has a sensitivity of 45 mV/kPa.
1970 - 214
 * An approximate p(h) formula is = p(h[m])[kPa] = p_0 - 11.95 * 10^-3 * h
215
 * p(h[m])[kPa] = 101.3 - 11.95 * 10^-3 * h
216
 * 11.95 * 10^-3 * h = 101.3 - p[kPa]
217
 * h = (101.3 - p[kPa])/0.01195
218
 * That is: dV = -45 mV * 11.95 * 10^-3 dh = -0.53775 mV / m.
219
 * That is, with 38.02 * 1.024 / 3 steps per mV: -7 steps / m
220
 
221
Display pressures
222
4165 mV-->1084.7
223
4090 mV-->1602.4   517.7
224
3877 mV-->3107.8  1503.4
225
 
226
4165 mV-->1419.1
227
3503 mV-->208.1
228
Diff.:   1211.0
229
 
230
Calculated  Vout = 5V(.009P-0.095) --> 5V .009P = Vout + 5V 0.095 --> P = (Vout + 5V 0.095)/(5V 0.009)
231
4165 mV = 5V(0.009P-0.095)  P = 103.11 kPa  h = -151.4m
232
4090 mV = 5V(0.009P-0.095)  P = 101.44 kPa  h = -11.7m   139.7m
233
3877 mV = 5V(0.009P-0.095)  P = 96.7   kPa  h = 385m     396.7m
234
 
235
4165 mV = 5V(0.009P-0.095)  P = 103.11 kPa  h = -151.4m
236
3503 mV = 5V(0.009P-0.095)  P = 88.4   kPa  h = 384m  Diff: 1079.5m
237
Pressure at sea level: 101.3 kPa. voltage: 5V * (0.009P-0.095) = 4.0835V
238
This is OCR2 = 143.15 at 1.5V in --> simple pressure =
239
*/
240
 
241
#define AIRPRESSURE_SUMMATION_FACTOR 14
1775 - 242
#define AIRPRESSURE_FILTER 8
243
// Minimum A/D value before a range change is performed.
244
#define MIN_RAWPRESSURE (200 * 2)
245
// Maximum A/D value before a range change is performed.
246
#define MAX_RAWPRESSURE (1023 * 2 - MIN_RAWPRESSURE)
247
 
1796 - 248
#define MIN_RANGES_EXTRAPOLATION 15
249
#define MAX_RANGES_EXTRAPOLATION 240
1775 - 250
 
251
#define PRESSURE_EXTRAPOLATION_COEFF 25L
252
#define AUTORANGE_WAIT_FACTOR 1
253
 
1970 - 254
#define ABS_ALTITUDE_OFFSET 108205
255
 
2015 - 256
extern uint16_t simpleAirPressure;
1775 - 257
/*
258
 * At saturation, the filteredAirPressure may actually be (simulated) negative.
259
 */
2015 - 260
extern int32_t filteredAirPressure;
1775 - 261
 
262
/*
1612 dongfang 263
 * Flag: Interrupt handler has done all A/D conversion and processing.
264
 */
265
extern volatile uint8_t analogDataReady;
266
 
267
void analog_init(void);
268
 
1952 - 269
/*
2015 - 270
 * This is really only for use for the ENC-03 code module, which needs to get the raw value
271
 * for its calibration. The raw value should not be used for anything else.
272
 */
273
uint16_t rawGyroValue(uint8_t axis);
274
 
275
/*
1952 - 276
 * Start the conversion cycle. It will stop automatically.
277
 */
278
void startAnalogConversionCycle(void);
1612 dongfang 279
 
1952 - 280
/*
281
 * Process the sensor data to update the exported variables. Must be called after each measurement cycle and before the data is used.
282
 */
1955 - 283
void analog_update(void);
1612 dongfang 284
 
285
/*
1961 - 286
 * Read gyro and acc.meter calibration from EEPROM.
1612 dongfang 287
 */
1961 - 288
void analog_setNeutral(void);
1612 dongfang 289
 
290
/*
1961 - 291
 * Zero-offset gyros and write the calibration data to EEPROM.
1612 dongfang 292
 */
1961 - 293
void analog_calibrateGyros(void);
294
 
295
/*
296
 * Zero-offset accelerometers and write the calibration data to EEPROM.
297
 */
1612 dongfang 298
void analog_calibrateAcc(void);
299
#endif //_ANALOG_H