Subversion Repositories FlightCtrl

Rev

Rev 1967 | Rev 1970 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
#ifndef _ANALOG_H
2
#define _ANALOG_H
3
#include <inttypes.h>
1965 - 4
#include "configuration.h"
1612 dongfang 5
 
6
/*
1645 - 7
 * How much low pass filtering to apply for gyro_PID.
1612 dongfang 8
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
9
 * Temporarily replaced by userparam-configurable variable.
10
 */
1646 - 11
// #define GYROS_PID_FILTER 1
1612 dongfang 12
 
13
/*
1645 - 14
 * How much low pass filtering to apply for gyro_ATT.
1612 dongfang 15
 * 0=illegal, 1=no filtering, 2=50% last value + 50% new value, 3=67% last value + 33 % new value etc...
16
 * Temporarily replaced by userparam-configurable variable.
17
 */
1646 - 18
// #define GYROS_ATT_FILTER 1
1612 dongfang 19
 
20
// Temporarily replaced by userparam-configurable variable.
1646 - 21
// #define ACC_FILTER 4
1612 dongfang 22
 
23
/*
1821 - 24
 About setting constants for different gyros:
25
 Main parameters are positive directions and voltage/angular speed gain.
26
 The "Positive direction" is the rotation direction around an axis where
27
 the corresponding gyro outputs a voltage > the no-rotation voltage.
28
 A gyro is considered, in this code, to be "forward" if its positive
29
 direction is:
30
 - Nose down for pitch
31
 - Left hand side down for roll
32
 - Clockwise seen from above for yaw.
33
 Declare the GYRO_REVERSE_YAW, GYRO_REVERSE_ROLL and
34
 GYRO_REVERSE_PITCH #define's if the respective gyros are reverse.
35
 
36
 Setting gyro gain correctly: All sensor measurements in analog.c take
37
 place in a cycle, each cycle comprising all sensors. Some sensors are
38
 sampled more than ones, and the results added. The pitch and roll gyros
39
 are sampled 4 times and the yaw gyro 2 times in the original H&I V0.74
40
 code.
41
 In the H&I code, the results for pitch and roll are multiplied by 2 (FC1.0)
42
 or 4 (other versions), offset to zero, low pass filtered and then assigned
43
 to the "HiResXXXX" and "AdWertXXXXFilter" variables, where XXXX is nick or
44
 roll.
45
 So:
46
 
47
 gyro = V * (ADCValue1 + ADCValue2 + ADCValue3 + ADCValue4),
48
 where V is 2 for FC1.0 and 4 for all others.
49
 
50
 Assuming constant ADCValue, in the H&I code:
1612 dongfang 51
 
1821 - 52
 gyro = I * ADCValue.
1612 dongfang 53
 
1821 - 54
 where I is 8 for FC1.0 and 16 for all others.
1612 dongfang 55
 
1821 - 56
 The relation between rotation rate and ADCValue:
57
 ADCValue [units] =
58
 rotational speed [deg/s] *
59
 gyro sensitivity [V / deg/s] *
60
 amplifier gain [units] *
61
 1024 [units] /
62
 3V full range [V]
1612 dongfang 63
 
1821 - 64
 or: H is the number of steps the ADC value changes with,
65
 for a 1 deg/s change in rotational velocity:
66
 H = ADCValue [units] / rotation rate [deg/s] =
67
 gyro sensitivity [V / deg/s] *
68
 amplifier gain [units] *
69
 1024 [units] /
70
 3V full range [V]
1612 dongfang 71
 
1821 - 72
 Examples:
73
 FC1.3 has 0.67 mV/deg/s gyros and amplifiers with a gain of 5.7:
74
 H = 0.00067 V / deg / s * 5.7 * 1024 / 3V = 1.304 units/(deg/s).
75
 FC2.0 has 6*(3/5) mV/deg/s gyros (they are ratiometric) and no amplifiers:
76
 H = 0.006 V / deg / s * 1 * 1024 * 3V / (3V * 5V) = 1.2288 units/(deg/s).
77
 My InvenSense copter has 2mV/deg/s gyros and no amplifiers:
78
 H = 0.002 V / deg / s * 1 * 1024 / 3V = 0.6827 units/(deg/s)
79
 (only about half as sensitive as V1.3. But it will take about twice the
80
 rotation rate!)
1612 dongfang 81
 
1821 - 82
 All together: gyro = I * H * rotation rate [units / (deg/s)].
83
 */
1612 dongfang 84
 
85
/*
86
 * A factor that the raw gyro values are multiplied by,
1645 - 87
 * before being filtered and passed to the attitude module.
1612 dongfang 88
 * A value of 1 would cause a little bit of loss of precision in the
89
 * filtering (on the other hand the values are so noisy in flight that
90
 * it will not really matter - but when testing on the desk it might be
91
 * noticeable). 4 is fine for the default filtering.
1645 - 92
 * Experiment: Set it to 1.
1612 dongfang 93
 */
1874 - 94
#define GYRO_FACTOR_PITCHROLL 1
1612 dongfang 95
 
96
/*
97
 * How many samples are summed in one ADC loop, for pitch&roll and yaw,
98
 * respectively. This is = the number of occurences of each channel in the
99
 * channelsForStates array in analog.c.
100
 */
101
#define GYRO_SUMMATION_FACTOR_PITCHROLL 4
102
#define GYRO_SUMMATION_FACTOR_YAW 2
103
 
1646 - 104
#define ACC_SUMMATION_FACTOR_PITCHROLL 2
105
#define ACC_SUMMATION_FACTOR_Z 1
106
 
1612 dongfang 107
/*
1821 - 108
 Integration:
109
 The HiResXXXX values are divided by 8 (in H&I firmware) before integration.
110
 In the Killagreg rewrite of the H&I firmware, the factor 8 is called
111
 HIRES_GYRO_AMPLIFY. In this code, it is called HIRES_GYRO_INTEGRATION_FACTOR,
112
 and care has been taken that all other constants (gyro to degree factor, and
113
 180 degree flip-over detection limits) are corrected to it. Because the
114
 division by the constant takes place in the flight attitude code, the
115
 constant is there.
1612 dongfang 116
 
1821 - 117
 The control loop executes every 2ms, and for each iteration
118
 gyro_ATT[PITCH/ROLL] is added to gyroIntegral[PITCH/ROLL].
119
 Assuming a constant rotation rate v and a zero initial gyroIntegral
120
 (for this explanation), we get:
1612 dongfang 121
 
1821 - 122
 gyroIntegral =
123
 N * gyro / HIRES_GYRO_INTEGRATION_FACTOR =
124
 N * I * H * v / HIRES_GYRO_INTEGRATION_FACTOR
1612 dongfang 125
 
1821 - 126
 where N is the number of summations; N = t/2ms.
1612 dongfang 127
 
1821 - 128
 For one degree of rotation: t*v = 1:
1612 dongfang 129
 
1821 - 130
 gyroIntegralXXXX = t/2ms * I * H * 1/t = INTEGRATION_FREQUENCY * I * H / HIRES_GYRO_INTEGRATION_FACTOR.
1612 dongfang 131
 
1821 - 132
 This number (INTEGRATION_FREQUENCY * I * H) is the integral-to-degree factor.
133
 
134
 Examples:
135
 FC1.3: I=2, H=1.304, HIRES_GYRO_INTEGRATION_FACTOR=8 --> integralDegreeFactor = 1304
136
 FC2.0: I=2, H=2.048, HIRES_GYRO_INTEGRATION_FACTOR=13 --> integralDegreeFactor = 1260
137
 My InvenSense copter: HIRES_GYRO_INTEGRATION_FACTOR=4, H=0.6827 --> integralDegreeFactor = 1365
138
 */
139
 
1612 dongfang 140
/*
1645 - 141
 * The value of gyro[PITCH/ROLL] for one deg/s = The hardware factor H * the number of samples * multiplier factor.
1612 dongfang 142
 * Will be about 10 or so for InvenSense, and about 33 for ADXRS610.
143
 */
144
#define GYRO_RATE_FACTOR_PITCHROLL (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_PITCHROLL * GYRO_FACTOR_PITCHROLL)
145
#define GYRO_RATE_FACTOR_YAW (GYRO_HW_FACTOR * GYRO_SUMMATION_FACTOR_YAW)
146
 
147
/*
1645 - 148
 * Gyro saturation prevention.
149
 */
150
// How far from the end of its range a gyro is considered near-saturated.
151
#define SENSOR_MIN_PITCHROLL 32
152
// Other end of the range (calculated)
153
#define SENSOR_MAX_PITCHROLL (GYRO_SUMMATION_FACTOR_PITCHROLL * 1023 - SENSOR_MIN_PITCHROLL)
154
// Max. boost to add "virtually" to gyro signal at total saturation.
155
#define EXTRAPOLATION_LIMIT 2500
156
// Slope of the boost (calculated)
157
#define EXTRAPOLATION_SLOPE (EXTRAPOLATION_LIMIT/SENSOR_MIN_PITCHROLL)
158
 
159
/*
1612 dongfang 160
 * This value is subtracted from the gyro noise measurement in each iteration,
161
 * making it return towards zero.
162
 */
163
#define GYRO_NOISE_MEASUREMENT_DAMPING 5
164
 
1645 - 165
#define PITCH 0
166
#define ROLL 1
1646 - 167
#define YAW 2
168
#define Z 2
1612 dongfang 169
/*
170
 * The values that this module outputs
1645 - 171
 * These first 2 exported arrays are zero-offset. The "PID" ones are used
172
 * in the attitude control as rotation rates. The "ATT" ones are for
173
 * integration to angles. For the same axis, the PID and ATT variables
174
 * generally have about the same values. There are just some differences
175
 * in filtering, and when a gyro becomes near saturated.
176
 * Maybe this distinction is not really necessary.
1612 dongfang 177
 */
1645 - 178
extern volatile int16_t gyro_PID[2];
179
extern volatile int16_t gyro_ATT[2];
180
extern volatile int16_t gyroD[2];
1775 - 181
extern volatile int16_t yawGyro;
1612 dongfang 182
extern volatile uint16_t ADCycleCount;
183
extern volatile int16_t UBat;
184
 
1775 - 185
// 1:11 voltage divider, 1024 counts per 3V, and result is divided by 3.
1869 - 186
#define UBAT_AT_5V (int16_t)((5.0 * (1.0/11.0)) * 1024 / (3.0 * 3))
1775 - 187
 
1969 - 188
extern sensorOffset_t gyroOffset;
189
extern sensorOffset_t accOffset;
190
extern sensorOffset_t gyroAmplifierOffset;
1960 - 191
 
1612 dongfang 192
/*
193
 * This is not really for external use - but the ENC-03 gyro modules needs it.
194
 */
1646 - 195
extern volatile int16_t rawGyroSum[3];
1612 dongfang 196
 
197
/*
1645 - 198
 * The acceleration values that this module outputs. They are zero based.
1612 dongfang 199
 */
1646 - 200
extern volatile int16_t acc[3];
1645 - 201
extern volatile int16_t filteredAcc[2];
1872 - 202
// extern volatile int32_t stronglyFilteredAcc[3];
1612 dongfang 203
 
204
/*
1775 - 205
 * Diagnostics: Gyro noise level because of motor vibrations. The variables
206
 * only really reflect the noise level when the copter stands still but with
207
 * its motors running.
208
 */
209
extern volatile uint16_t gyroNoisePeak[2];
210
extern volatile uint16_t accNoisePeak[2];
211
 
212
/*
213
 * Air pressure.
1961 - 214
 * The sensor has a sensitivity of 45 mV/kPa.
1796 - 215
 * An approximate p(h) formula is = p(h[m])[Pa] = p_0 - 11.95 * 10^-3 * h
1961 - 216
 * That is: dV = 45 mV * 11.95 * 10^-3 dh = 0.53775 mV / m.
217
 * That is, with 1.024 / 3 steps per mV: 0.183552 steps / m
1775 - 218
 */
1961 - 219
#define AIRPRESSURE_SUMMATION_FACTOR 54
1775 - 220
#define AIRPRESSURE_FILTER 8
221
// Minimum A/D value before a range change is performed.
222
#define MIN_RAWPRESSURE (200 * 2)
223
// Maximum A/D value before a range change is performed.
224
#define MAX_RAWPRESSURE (1023 * 2 - MIN_RAWPRESSURE)
225
 
1796 - 226
#define MIN_RANGES_EXTRAPOLATION 15
227
#define MAX_RANGES_EXTRAPOLATION 240
1775 - 228
 
229
#define PRESSURE_EXTRAPOLATION_COEFF 25L
230
#define AUTORANGE_WAIT_FACTOR 1
231
 
232
extern volatile uint16_t simpleAirPressure;
233
/*
234
 * At saturation, the filteredAirPressure may actually be (simulated) negative.
235
 */
236
extern volatile int32_t filteredAirPressure;
237
 
238
/*
1612 dongfang 239
 * Flag: Interrupt handler has done all A/D conversion and processing.
240
 */
241
extern volatile uint8_t analogDataReady;
242
 
243
void analog_init(void);
244
 
1952 - 245
/*
246
 * Start the conversion cycle. It will stop automatically.
247
 */
248
void startAnalogConversionCycle(void);
1612 dongfang 249
 
1952 - 250
/*
251
 * Process the sensor data to update the exported variables. Must be called after each measurement cycle and before the data is used.
252
 */
1955 - 253
void analog_update(void);
1612 dongfang 254
 
255
/*
1961 - 256
 * Read gyro and acc.meter calibration from EEPROM.
1612 dongfang 257
 */
1961 - 258
void analog_setNeutral(void);
1612 dongfang 259
 
260
/*
1961 - 261
 * Zero-offset gyros and write the calibration data to EEPROM.
1612 dongfang 262
 */
1961 - 263
void analog_calibrateGyros(void);
264
 
265
/*
266
 * Zero-offset accelerometers and write the calibration data to EEPROM.
267
 */
1612 dongfang 268
void analog_calibrateAcc(void);
269
#endif //_ANALOG_H