Subversion Repositories FlightCtrl

Rev

Rev 1987 | Rev 2015 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
1864 - 55
 
1612 dongfang 56
#include "analog.h"
1864 - 57
#include "attitude.h"
1612 dongfang 58
#include "sensors.h"
1964 - 59
#include "printf_P.h"
1612 dongfang 60
 
61
// for Delay functions
62
#include "timer0.h"
63
 
1955 - 64
// For debugOut
1612 dongfang 65
#include "uart0.h"
66
 
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
69
 
1955 - 70
// For debugOut.digital
1796 - 71
#include "output.h"
72
 
1952 - 73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
1969 - 76
const char* recal = ", recalibration needed.";
77
 
1854 - 78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
85
 */
1952 - 86
volatile uint16_t sensorInputs[8];
1646 - 87
volatile int16_t rawGyroSum[3];
88
volatile int16_t acc[3];
1979 - 89
volatile int16_t filteredAcc[3] = { 0,0,0 };
1872 - 90
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
1612 dongfang 91
 
92
/*
1645 - 93
 * These 4 exported variables are zero-offset. The "PID" ones are used
94
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 95
 * integration to angles.
1612 dongfang 96
 */
1645 - 97
volatile int16_t gyro_PID[2];
98
volatile int16_t gyro_ATT[2];
99
volatile int16_t gyroD[2];
1646 - 100
volatile int16_t yawGyro;
1612 dongfang 101
 
102
/*
103
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
104
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 105
 * to be centered on zero.
1612 dongfang 106
 */
107
 
1969 - 108
sensorOffset_t gyroOffset;
109
sensorOffset_t accOffset;
110
sensorOffset_t gyroAmplifierOffset;
1960 - 111
 
1612 dongfang 112
/*
113
 * This allows some experimentation with the gyro filters.
114
 * Should be replaced by #define's later on...
115
 */
116
 
1645 - 117
/*
1775 - 118
 * Air pressure
1645 - 119
 */
1970 - 120
volatile uint8_t rangewidth = 105;
1612 dongfang 121
 
1775 - 122
// Direct from sensor, irrespective of range.
123
// volatile uint16_t rawAirPressure;
124
 
125
// Value of 2 samples, with range.
126
volatile uint16_t simpleAirPressure;
127
 
128
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
129
volatile int32_t filteredAirPressure;
130
 
131
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
132
volatile int32_t airPressureSum;
133
 
134
// The number of samples summed into airPressureSum so far.
135
volatile uint8_t pressureMeasurementCount;
136
 
1612 dongfang 137
/*
1854 - 138
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 139
 * That is divided by 3 below, for a final 10.34 per volt.
140
 * So the initial value of 100 is for 9.7 volts.
141
 */
142
volatile int16_t UBat = 100;
143
 
144
/*
145
 * Control and status.
146
 */
147
volatile uint16_t ADCycleCount = 0;
148
volatile uint8_t analogDataReady = 1;
149
 
150
/*
151
 * Experiment: Measuring vibration-induced sensor noise.
152
 */
1979 - 153
volatile uint16_t gyroNoisePeak[3];
154
volatile uint16_t accNoisePeak[3];
1612 dongfang 155
 
1986 - 156
volatile uint8_t adState;
1987 - 157
volatile uint8_t adChannel;
1986 - 158
 
1612 dongfang 159
// ADC channels
1645 - 160
#define AD_GYRO_YAW       0
161
#define AD_GYRO_ROLL      1
1634 - 162
#define AD_GYRO_PITCH     2
163
#define AD_AIRPRESSURE    3
1645 - 164
#define AD_UBAT           4
165
#define AD_ACC_Z          5
166
#define AD_ACC_ROLL       6
167
#define AD_ACC_PITCH      7
1612 dongfang 168
 
169
/*
170
 * Table of AD converter inputs for each state.
1854 - 171
 * The number of samples summed for each channel is equal to
1612 dongfang 172
 * the number of times the channel appears in the array.
173
 * The max. number of samples that can be taken in 2 ms is:
1854 - 174
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
175
 * loop needs a little time between reading AD values and
1612 dongfang 176
 * re-enabling ADC, the real limit is (how much?) lower.
177
 * The acc. sensor is sampled even if not used - or installed
178
 * at all. The cost is not significant.
179
 */
180
 
1870 - 181
const uint8_t channelsForStates[] PROGMEM = {
182
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
183
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 184
 
1870 - 185
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
186
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
187
 
188
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
189
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
190
  AD_AIRPRESSURE, // at 14, finish air pressure.
191
 
192
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
193
  AD_GYRO_ROLL,   // at 16, finish roll gyro
194
  AD_UBAT         // at 17, measure battery.
195
};
1612 dongfang 196
 
197
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
198
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
199
 
200
void analog_init(void) {
1821 - 201
        uint8_t sreg = SREG;
202
        // disable all interrupts before reconfiguration
203
        cli();
1612 dongfang 204
 
1821 - 205
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
206
        DDRA = 0x00;
207
        PORTA = 0x00;
208
        // Digital Input Disable Register 0
209
        // Disable digital input buffer for analog adc_channel pins
210
        DIDR0 = 0xFF;
211
        // external reference, adjust data to the right
1952 - 212
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 213
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1987 - 214
        ADMUX = (ADMUX & 0xE0);
1821 - 215
        //Set ADC Control and Status Register A
216
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 217
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 218
        //Set ADC Control and Status Register B
219
        //Trigger Source to Free Running Mode
1952 - 220
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
221
 
222
        startAnalogConversionCycle();
223
 
1821 - 224
        // restore global interrupt flags
225
        SREG = sreg;
1612 dongfang 226
}
227
 
1821 - 228
void measureNoise(const int16_t sensor,
229
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
230
        if (sensor > (int16_t) (*noiseMeasurement)) {
231
                *noiseMeasurement = sensor;
232
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
233
                *noiseMeasurement = -sensor;
234
        } else if (*noiseMeasurement > damping) {
235
                *noiseMeasurement -= damping;
236
        } else {
237
                *noiseMeasurement = 0;
238
        }
1612 dongfang 239
}
240
 
1796 - 241
/*
242
 * Min.: 0
243
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
244
 */
1775 - 245
uint16_t getSimplePressure(int advalue) {
1821 - 246
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 247
}
248
 
1952 - 249
void startAnalogConversionCycle(void) {
1960 - 250
  analogDataReady = 0;
1952 - 251
  // Stop the sampling. Cycle is over.
252
  for (uint8_t i = 0; i < 8; i++) {
253
    sensorInputs[i] = 0;
254
  }
1986 - 255
  adState = 0;
1987 - 256
  adChannel = AD_GYRO_PITCH;
257
  ADMUX = (ADMUX & 0xE0) | adChannel;
1952 - 258
  startADC();
259
}
260
 
1645 - 261
/*****************************************************
1854 - 262
 * Interrupt Service Routine for ADC
1963 - 263
 * Runs at 312.5 kHz or 3.2 �s. When all states are
1952 - 264
 * processed further conversions are stopped.
1645 - 265
 *****************************************************/
1870 - 266
ISR(ADC_vect) {
1986 - 267
  sensorInputs[adChannel] += ADC;
1952 - 268
  // set up for next state.
1986 - 269
  adState++;
270
  if (adState < sizeof(channelsForStates)) {
271
    adChannel = pgm_read_byte(&channelsForStates[adState]);
272
    // set adc muxer to next adChannel
273
    ADMUX = (ADMUX & 0xE0) | adChannel;
1952 - 274
    // after full cycle stop further interrupts
275
    startADC();
276
  } else {
277
    ADCycleCount++;
278
    analogDataReady = 1;
279
    // do not restart ADC converter. 
280
  }
281
}
1612 dongfang 282
 
1952 - 283
void analog_updateGyros(void) {
284
  // for various filters...
285
  int16_t tempOffsetGyro, tempGyro;
286
 
1991 - 287
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 288
  for (uint8_t axis=0; axis<2; axis++) {
289
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
1967 - 290
 
1952 - 291
    /*
292
     * Process the gyro data for the PID controller.
293
     */
294
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
295
    //    gyro with a wider range, and helps counter saturation at full control.
296
 
1960 - 297
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 298
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
1955 - 299
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 300
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
301
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1955 - 302
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 303
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
304
          + SENSOR_MAX_PITCHROLL;
305
      }
306
    }
307
 
308
    // 2) Apply sign and offset, scale before filtering.
309
    if (GYRO_REVERSED[axis]) {
1960 - 310
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 311
    } else {
1960 - 312
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 313
    }
314
 
315
    // 3) Scale and filter.
1960 - 316
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
1952 - 317
 
318
    // 4) Measure noise.
319
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
320
 
321
    // 5) Differential measurement.
1960 - 322
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
1952 - 323
 
324
    // 6) Done.
325
    gyro_PID[axis] = tempOffsetGyro;
326
 
327
    /*
328
     * Now process the data for attitude angles.
329
     */
330
    tempGyro = rawGyroSum[axis];
331
 
332
    // 1) Apply sign and offset, scale before filtering.
333
    if (GYRO_REVERSED[axis]) {
1960 - 334
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 335
    } else {
1960 - 336
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 337
    }
338
 
339
    // 2) Filter.
1960 - 340
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
1952 - 341
  }
342
 
343
  // Yaw gyro.
344
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
345
  if (GYRO_REVERSED[YAW])
1960 - 346
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 347
  else
1960 - 348
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1952 - 349
}
1775 - 350
 
1952 - 351
void analog_updateAccelerometers(void) {
1979 - 352
  // Z acc.
353
  if (ACC_REVERSED[Z])
354
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
355
  else
356
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
357
 
1952 - 358
  // Pitch and roll axis accelerations.
359
  for (uint8_t axis=0; axis<2; axis++) {
360
    if (ACC_REVERSED[axis])
1960 - 361
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
1952 - 362
    else
1960 - 363
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
1979 - 364
  }
365
 
366
  for (uint8_t axis=0; axis<3; axis++) {
1960 - 367
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 368
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
369
  }
370
}
1645 - 371
 
1952 - 372
void analog_updateAirPressure(void) {
373
  static uint16_t pressureAutorangingWait = 25;
374
  uint16_t rawAirPressure;
375
  int16_t newrange;
376
  // air pressure
377
  if (pressureAutorangingWait) {
378
    //A range switch was done recently. Wait for steadying.
379
    pressureAutorangingWait--;
1955 - 380
    debugOut.analog[27] = (uint16_t) OCR0A;
381
    debugOut.analog[31] = simpleAirPressure;
1952 - 382
  } else {
383
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
384
    if (rawAirPressure < MIN_RAWPRESSURE) {
385
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
386
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
387
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
388
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
389
        OCR0A = newrange;
390
      } else {
391
        if (OCR0A) {
392
          OCR0A--;
393
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 394
        }
1952 - 395
      }
396
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
397
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
398
      // If near the end, make a limited increase
399
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
400
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
401
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
402
        OCR0A = newrange;
403
      } else {
404
        if (OCR0A < 254) {
405
          OCR0A++;
406
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
407
        }
408
      }
409
    }
410
 
411
    // Even if the sample is off-range, use it.
412
    simpleAirPressure = getSimplePressure(rawAirPressure);
1955 - 413
    debugOut.analog[27] = (uint16_t) OCR0A;
414
    debugOut.analog[31] = simpleAirPressure;
1952 - 415
 
416
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
417
      // Danger: pressure near lower end of range. If the measurement saturates, the
418
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 419
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 420
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
421
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
422
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
423
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
424
      // Danger: pressure near upper end of range. If the measurement saturates, the
425
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 427
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
428
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
    } else {
431
      // normal case.
432
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
433
      // The 2 cases above (end of range) are ignored for this.
1955 - 434
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
1952 - 435
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
436
        airPressureSum += simpleAirPressure / 2;
437
      else
438
        airPressureSum += simpleAirPressure;
439
    }
440
 
441
    // 2 samples were added.
442
    pressureMeasurementCount += 2;
443
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
444
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
445
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
446
      pressureMeasurementCount = airPressureSum = 0;
447
    }
448
  }
449
}
1821 - 450
 
1952 - 451
void analog_updateBatteryVoltage(void) {
452
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
453
  // This is divided by 3 --> 10.34 counts per volt.
454
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 455
  debugOut.analog[11] = UBat;
1986 - 456
  debugOut.analog[21] = sensorInputs[AD_UBAT];
1952 - 457
}
1821 - 458
 
1952 - 459
void analog_update(void) {
460
  analog_updateGyros();
461
  analog_updateAccelerometers();
462
  analog_updateAirPressure();
463
  analog_updateBatteryVoltage();
1612 dongfang 464
}
465
 
1961 - 466
void analog_setNeutral() {
1967 - 467
  if (gyroAmplifierOffset_readFromEEProm()) {
1969 - 468
    printf("gyro amp invalid%s",recal);
1971 - 469
    gyro_loadAmplifierOffsets(1);
1969 - 470
  } else
1971 - 471
      gyro_loadAmplifierOffsets(0);
1967 - 472
 
1961 - 473
  if (gyroOffset_readFromEEProm()) {
1969 - 474
    printf("gyro offsets invalid%s",recal);
1961 - 475
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
476
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
477
  }
1964 - 478
 
1961 - 479
  if (accOffset_readFromEEProm()) {
1969 - 480
    printf("acc. meter offsets invalid%s",recal);
1961 - 481
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
1979 - 482
    accOffset.offsets[Z] = 717 * ACC_SUMMATION_FACTOR_Z;
1961 - 483
  }
484
 
485
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
486
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
487
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
488
 
489
  // Setting offset values has an influence in the analog.c ISR
490
  // Therefore run measurement for 100ms to achive stable readings
1967 - 491
  delay_ms_with_adc_measurement(100);
1961 - 492
 
493
  // Rough estimate. Hmm no nothing happens at calibration anyway.
494
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
495
  // pressureMeasurementCount = 0;
496
}
497
 
498
void analog_calibrateGyros(void) {
1612 dongfang 499
#define GYRO_OFFSET_CYCLES 32
1952 - 500
  uint8_t i, axis;
1963 - 501
  int32_t offsets[3] = { 0, 0, 0 };
1952 - 502
  gyro_calibrate();
503
 
504
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
505
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
1967 - 506
    delay_ms_with_adc_measurement(20);
1952 - 507
    for (axis = PITCH; axis <= YAW; axis++) {
1963 - 508
      offsets[axis] += rawGyroSum[axis];
1952 - 509
    }
510
  }
511
 
512
  for (axis = PITCH; axis <= YAW; axis++) {
1963 - 513
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
1952 - 514
  }
1961 - 515
 
516
  gyroOffset_writeToEEProm();  
1612 dongfang 517
}
518
 
519
/*
520
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
521
 * Does not (!} update the local variables. This must be done with a
522
 * call to analog_calibrate() - this always (?) is done by the caller
523
 * anyway. There would be nothing wrong with updating the variables
524
 * directly from here, though.
525
 */
526
void analog_calibrateAcc(void) {
527
#define ACC_OFFSET_CYCLES 10
1960 - 528
  uint8_t i, axis;
529
  int32_t deltaOffset[3] = { 0, 0, 0 };
530
  int16_t filteredDelta;
531
 
532
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
1967 - 533
    delay_ms_with_adc_measurement(10);
1960 - 534
    for (axis = PITCH; axis <= YAW; axis++) {
535
      deltaOffset[axis] += acc[axis];
536
    }
537
  }
538
 
539
  for (axis = PITCH; axis <= YAW; axis++) {
540
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
541
      / ACC_OFFSET_CYCLES;
542
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
543
  }
1961 - 544
 
1960 - 545
  accOffset_writeToEEProm();  
1612 dongfang 546
}