Subversion Repositories FlightCtrl

Rev

Rev 1866 | Rev 1869 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
1864 - 54
 
1612 dongfang 55
#include "analog.h"
1864 - 56
#include "attitude.h"
1612 dongfang 57
#include "sensors.h"
58
 
59
// for Delay functions
60
#include "timer0.h"
61
 
62
// For DebugOut
63
#include "uart0.h"
64
 
65
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
67
 
1796 - 68
// For DebugOut.Digital
69
#include "output.h"
70
 
1854 - 71
/*
72
 * For each A/D conversion cycle, each analog channel is sampled a number of times
73
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 74
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 75
 * They are exported in the analog.h file - but please do not use them! The only
76
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
77
 * the offsets with the DAC.
78
 */
1646 - 79
volatile int16_t rawGyroSum[3];
80
volatile int16_t acc[3];
1821 - 81
volatile int16_t filteredAcc[2] = { 0, 0 };
1612 dongfang 82
 
83
/*
1645 - 84
 * These 4 exported variables are zero-offset. The "PID" ones are used
85
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 86
 * integration to angles.
1612 dongfang 87
 */
1645 - 88
volatile int16_t gyro_PID[2];
89
volatile int16_t gyro_ATT[2];
90
volatile int16_t gyroD[2];
1646 - 91
volatile int16_t yawGyro;
1612 dongfang 92
 
93
/*
94
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
95
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 96
 * to be centered on zero.
1612 dongfang 97
 */
1821 - 98
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
99
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
1612 dongfang 100
 
1821 - 101
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
102
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
1646 - 103
 
1612 dongfang 104
/*
105
 * This allows some experimentation with the gyro filters.
106
 * Should be replaced by #define's later on...
107
 */
1646 - 108
volatile uint8_t GYROS_PID_FILTER;
109
volatile uint8_t GYROS_ATT_FILTER;
110
volatile uint8_t GYROS_D_FILTER;
1612 dongfang 111
volatile uint8_t ACC_FILTER;
112
 
1645 - 113
/*
1775 - 114
 * Air pressure
1645 - 115
 */
1775 - 116
volatile uint8_t rangewidth = 106;
1612 dongfang 117
 
1775 - 118
// Direct from sensor, irrespective of range.
119
// volatile uint16_t rawAirPressure;
120
 
121
// Value of 2 samples, with range.
122
volatile uint16_t simpleAirPressure;
123
 
124
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
125
volatile int32_t filteredAirPressure;
126
 
127
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
128
volatile int32_t airPressureSum;
129
 
130
// The number of samples summed into airPressureSum so far.
131
volatile uint8_t pressureMeasurementCount;
132
 
1612 dongfang 133
/*
1854 - 134
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 135
 * That is divided by 3 below, for a final 10.34 per volt.
136
 * So the initial value of 100 is for 9.7 volts.
137
 */
138
volatile int16_t UBat = 100;
139
 
140
/*
141
 * Control and status.
142
 */
143
volatile uint16_t ADCycleCount = 0;
144
volatile uint8_t analogDataReady = 1;
145
 
146
/*
147
 * Experiment: Measuring vibration-induced sensor noise.
148
 */
1645 - 149
volatile uint16_t gyroNoisePeak[2];
150
volatile uint16_t accNoisePeak[2];
1612 dongfang 151
 
152
// ADC channels
1645 - 153
#define AD_GYRO_YAW       0
154
#define AD_GYRO_ROLL      1
1634 - 155
#define AD_GYRO_PITCH     2
156
#define AD_AIRPRESSURE    3
1645 - 157
#define AD_UBAT           4
158
#define AD_ACC_Z          5
159
#define AD_ACC_ROLL       6
160
#define AD_ACC_PITCH      7
1612 dongfang 161
 
162
/*
163
 * Table of AD converter inputs for each state.
1854 - 164
 * The number of samples summed for each channel is equal to
1612 dongfang 165
 * the number of times the channel appears in the array.
166
 * The max. number of samples that can be taken in 2 ms is:
1854 - 167
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
168
 * loop needs a little time between reading AD values and
1612 dongfang 169
 * re-enabling ADC, the real limit is (how much?) lower.
170
 * The acc. sensor is sampled even if not used - or installed
171
 * at all. The cost is not significant.
172
 */
173
 
1821 - 174
const uint8_t channelsForStates[] PROGMEM = { AD_GYRO_PITCH, AD_GYRO_ROLL,
175
                AD_GYRO_YAW,
1612 dongfang 176
 
1821 - 177
                AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 178
 
1821 - 179
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
1612 dongfang 180
 
1821 - 181
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
1612 dongfang 182
 
1821 - 183
                AD_ACC_PITCH, // at 12, finish pitch axis acc.
184
                AD_ACC_ROLL, // at 13, finish roll axis acc.
185
                AD_AIRPRESSURE, // at 14, finish air pressure.
1612 dongfang 186
 
1821 - 187
                AD_GYRO_PITCH, // at 15, finish pitch gyro
188
                AD_GYRO_ROLL, // at 16, finish roll gyro
189
                AD_UBAT // at 17, measure battery.
190
                };
191
 
1612 dongfang 192
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
193
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
194
 
195
void analog_init(void) {
1821 - 196
        uint8_t sreg = SREG;
197
        // disable all interrupts before reconfiguration
198
        cli();
1612 dongfang 199
 
1821 - 200
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
201
        DDRA = 0x00;
202
        PORTA = 0x00;
203
        // Digital Input Disable Register 0
204
        // Disable digital input buffer for analog adc_channel pins
205
        DIDR0 = 0xFF;
206
        // external reference, adjust data to the right
207
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
208
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
209
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
210
        //Set ADC Control and Status Register A
211
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
212
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
213
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
214
        //Set ADC Control and Status Register B
215
        //Trigger Source to Free Running Mode
216
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
217
        // Start AD conversion
218
        analog_start();
219
        // restore global interrupt flags
220
        SREG = sreg;
1612 dongfang 221
}
222
 
1821 - 223
void measureNoise(const int16_t sensor,
224
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
225
        if (sensor > (int16_t) (*noiseMeasurement)) {
226
                *noiseMeasurement = sensor;
227
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
228
                *noiseMeasurement = -sensor;
229
        } else if (*noiseMeasurement > damping) {
230
                *noiseMeasurement -= damping;
231
        } else {
232
                *noiseMeasurement = 0;
233
        }
1612 dongfang 234
}
235
 
1796 - 236
/*
237
 * Min.: 0
238
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
239
 */
1775 - 240
uint16_t getSimplePressure(int advalue) {
1821 - 241
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 242
}
243
 
1645 - 244
/*****************************************************
1854 - 245
 * Interrupt Service Routine for ADC
246
 * Runs at 312.5 kHz or 3.2 µs. When all states are
247
 * processed the interrupt is disabled and further
1645 - 248
 * AD conversions are stopped.
249
 *****************************************************/
1821 - 250
ISR(ADC_vect)
251
{
252
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
253
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
254
        static uint16_t pressureAutorangingWait = 25;
255
        uint16_t rawAirPressure;
256
        uint8_t i, axis;
257
        int16_t newrange;
1612 dongfang 258
 
1821 - 259
        // for various filters...
260
        int16_t tempOffsetGyro, tempGyro;
1775 - 261
 
1821 - 262
        sensorInputs[ad_channel] += ADC;
1646 - 263
 
1821 - 264
        /*
265
         * Actually we don't need this "switch". We could do all the sampling into the
266
         * sensorInputs array first, and all the processing after the last sample.
267
         */
268
        switch (state++) {
1645 - 269
 
1821 - 270
        case 8: // Z acc
271
                if (ACC_REVERSED[Z])
272
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
273
                else
274
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
275
                break;
1796 - 276
 
1821 - 277
        case 11: // yaw gyro
278
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
279
                if (GYRO_REVERSED[YAW])
280
                        yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
281
                else
282
                        yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
283
                break;
1775 - 284
 
1821 - 285
        case 12: // pitch axis acc.
286
                if (ACC_REVERSED[PITCH])
287
                        acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
288
                else
289
                        acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
1796 - 290
 
1821 - 291
                filteredAcc[PITCH] = (filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH])
292
                                / ACC_FILTER;
293
                measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
294
                break;
1796 - 295
 
1821 - 296
        case 13: // roll axis acc.
297
                if (ACC_REVERSED[ROLL])
298
                        acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
299
                else
300
                        acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
301
                filteredAcc[ROLL] = (filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL])
302
                                / ACC_FILTER;
303
                measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
304
                break;
1775 - 305
 
1821 - 306
        case 14: // air pressure
307
                if (pressureAutorangingWait) {
308
                        //A range switch was done recently. Wait for steadying.
309
                        pressureAutorangingWait--;
310
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
311
                        DebugOut.Analog[31] = simpleAirPressure;
312
                        break;
313
                }
1634 - 314
 
1821 - 315
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
316
                if (rawAirPressure < MIN_RAWPRESSURE) {
317
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
318
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
319
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
320
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
321
                                OCR0A = newrange;
322
                        } else {
323
                                if (OCR0A) {
324
                                        OCR0A--;
325
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
326
                                }
327
                        }
328
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
329
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
330
                        // If near the end, make a limited increase
331
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
332
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
333
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
334
                                OCR0A = newrange;
335
                        } else {
336
                                if (OCR0A < 254) {
337
                                        OCR0A++;
338
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
339
                                }
340
                        }
341
                }
1645 - 342
 
1821 - 343
                // Even if the sample is off-range, use it.
344
                simpleAirPressure = getSimplePressure(rawAirPressure);
345
                DebugOut.Analog[27] = (uint16_t) OCR0A;
346
                DebugOut.Analog[31] = simpleAirPressure;
1645 - 347
 
1821 - 348
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
349
                        // Danger: pressure near lower end of range. If the measurement saturates, the
350
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1854 - 351
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
1821 - 352
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
353
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
354
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
355
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
356
                        // Danger: pressure near upper end of range. If the measurement saturates, the
357
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1854 - 358
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
1821 - 359
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
360
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
361
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
362
                } else {
363
                        // normal case.
364
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
365
                        // The 2 cases above (end of range) are ignored for this.
1854 - 366
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
1821 - 367
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
368
                                airPressureSum += simpleAirPressure / 2;
369
                        else
370
                                airPressureSum += simpleAirPressure;
371
                }
1645 - 372
 
1821 - 373
                // 2 samples were added.
374
                pressureMeasurementCount += 2;
375
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
376
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
377
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
378
                        pressureMeasurementCount = airPressureSum = 0;
379
                }
1645 - 380
 
1821 - 381
                break;
1645 - 382
 
1821 - 383
        case 15:
384
        case 16: // pitch or roll gyro.
385
                axis = state - 16;
386
                tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
387
                // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
388
                /*
389
                 * Process the gyro data for the PID controller.
390
                 */
391
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
392
                //    gyro with a wider range, and helps counter saturation at full control.
1645 - 393
 
1821 - 394
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
395
                        if (tempGyro < SENSOR_MIN_PITCHROLL) {
1854 - 396
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
1821 - 397
                                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
398
                        } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1854 - 399
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
1821 - 400
                                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
401
                                                + SENSOR_MAX_PITCHROLL;
1854 - 402
                        } else {
403
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
1821 - 404
                        }
405
                }
1645 - 406
 
1821 - 407
                // 2) Apply sign and offset, scale before filtering.
408
                if (GYRO_REVERSED[axis]) {
409
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
410
                } else {
411
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
412
                }
1612 dongfang 413
 
1821 - 414
                // 3) Scale and filter.
415
                tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro)
416
                                / GYROS_PID_FILTER;
417
 
418
                // 4) Measure noise.
419
                measureNoise(tempOffsetGyro, &gyroNoisePeak[axis],
420
                                GYRO_NOISE_MEASUREMENT_DAMPING);
421
 
422
                // 5) Differential measurement.
423
                gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro
424
                                - gyro_PID[axis])) / GYROS_D_FILTER;
425
 
426
                // 6) Done.
427
                gyro_PID[axis] = tempOffsetGyro;
428
 
429
                /*
430
                 * Now process the data for attitude angles.
431
                 */
432
                tempGyro = rawGyroSum[axis];
433
 
434
                // 1) Apply sign and offset, scale before filtering.
435
                if (GYRO_REVERSED[axis]) {
436
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
437
                } else {
438
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
439
                }
440
 
441
                // 2) Filter.
442
                gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro)
443
                                / GYROS_ATT_FILTER;
444
                break;
445
 
446
        case 17:
447
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
448
                // This is divided by 3 --> 10.34 counts per volt.
449
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1866 - 450
                DebugOut.Analog[11] = UBat;
1821 - 451
                analogDataReady = 1; // mark
452
                ADCycleCount++;
453
                // Stop the sampling. Cycle is over.
454
                state = 0;
455
                for (i = 0; i < 8; i++) {
456
                        sensorInputs[i] = 0;
457
                }
458
                break;
459
        default: {
460
        } // do nothing.
461
        }
462
 
463
        // set up for next state.
464
        ad_channel = pgm_read_byte(&channelsForStates[state]);
465
        // ad_channel = channelsForStates[state];
466
 
467
        // set adc muxer to next ad_channel
468
        ADMUX = (ADMUX & 0xE0) | ad_channel;
469
        // after full cycle stop further interrupts
470
        if (state)
471
                analog_start();
1612 dongfang 472
}
473
 
474
void analog_calibrate(void) {
475
#define GYRO_OFFSET_CYCLES 32
1821 - 476
        uint8_t i, axis;
477
        int32_t deltaOffsets[3] = { 0, 0, 0 };
1612 dongfang 478
 
1821 - 479
        // Set the filters... to be removed again, once some good settings are found.
480
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
481
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
482
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
483
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
1612 dongfang 484
 
1821 - 485
        gyro_calibrate();
1612 dongfang 486
 
1821 - 487
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
488
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
489
                Delay_ms_Mess(20);
490
                for (axis = PITCH; axis <= YAW; axis++) {
491
                        deltaOffsets[axis] += rawGyroSum[axis];
492
                }
493
        }
1646 - 494
 
1821 - 495
        for (axis = PITCH; axis <= YAW; axis++) {
1866 - 496
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
497
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
1821 - 498
        }
1646 - 499
 
1821 - 500
        // Noise is relative to offset. So, reset noise measurements when changing offsets.
501
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
1612 dongfang 502
 
1821 - 503
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
504
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
505
        accOffset[Z] = GetParamWord(PID_ACC_Z);
1646 - 506
 
1821 - 507
        // Rough estimate. Hmm no nothing happens at calibration anyway.
508
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
509
        // pressureMeasurementCount = 0;
1775 - 510
 
1821 - 511
        Delay_ms_Mess(100);
1612 dongfang 512
}
513
 
514
/*
515
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
516
 * Does not (!} update the local variables. This must be done with a
517
 * call to analog_calibrate() - this always (?) is done by the caller
518
 * anyway. There would be nothing wrong with updating the variables
519
 * directly from here, though.
520
 */
521
void analog_calibrateAcc(void) {
522
#define ACC_OFFSET_CYCLES 10
1821 - 523
        uint8_t i, axis;
524
        int32_t deltaOffset[3] = { 0, 0, 0 };
525
        int16_t filteredDelta;
526
        // int16_t pressureDiff, savedRawAirPressure;
1612 dongfang 527
 
1821 - 528
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
529
                Delay_ms_Mess(10);
530
                for (axis = PITCH; axis <= YAW; axis++) {
531
                        deltaOffset[axis] += acc[axis];
532
                }
533
        }
1612 dongfang 534
 
1821 - 535
        for (axis = PITCH; axis <= YAW; axis++) {
536
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
537
                                / ACC_OFFSET_CYCLES;
538
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
539
        }
1646 - 540
 
1821 - 541
        // Save ACC neutral settings to eeprom
542
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
543
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
544
        SetParamWord(PID_ACC_Z, accOffset[Z]);
1612 dongfang 545
 
1821 - 546
        // Noise is relative to offset. So, reset noise measurements when
547
        // changing offsets.
548
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
1645 - 549
 
1821 - 550
        // Setting offset values has an influence in the analog.c ISR
551
        // Therefore run measurement for 100ms to achive stable readings
552
        Delay_ms_Mess(100);
553
 
554
        // Set the feedback so that air pressure ends up in the middle of the range.
555
        // (raw pressure high --> OCR0A also high...)
556
        /*
557
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
558
         Delay_ms_Mess(1000);
559
 
560
         pressureDiff = 0;
561
         // DebugOut.Analog[16] = rawAirPressure;
562
 
563
         #define PRESSURE_CAL_CYCLE_COUNT 5
564
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
565
         savedRawAirPressure = rawAirPressure;
566
         OCR0A+=2;
567
         Delay_ms_Mess(500);
568
         // raw pressure will decrease.
569
         pressureDiff += (savedRawAirPressure - rawAirPressure);
570
         savedRawAirPressure = rawAirPressure;
571
         OCR0A-=2;
572
         Delay_ms_Mess(500);
573
         // raw pressure will increase.
574
         pressureDiff += (rawAirPressure - savedRawAirPressure);
575
         }
576
 
577
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
578
         DebugOut.Analog[27] = rangewidth;
579
         */
1612 dongfang 580
}