Subversion Repositories FlightCtrl

Rev

Rev 2102 | Rev 2104 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
#include <avr/io.h>
2
#include <avr/interrupt.h>
3
#include "eeprom.h"
2102 - 4
#include "output.h"
5
#include "flight.h"
1910 - 6
#include "attitude.h"
7
 
2102 - 8
// #define COARSERESOLUTION 1
1910 - 9
 
2099 - 10
#ifdef COARSERESOLUTION
11
#define NEUTRAL_PULSELENGTH 938
12
#define STABILIZATION_LOG_DIVIDER 6
13
#define SERVOLIMIT 500
14
#define SCALE_FACTOR 4
15
#define CS2 ((1<<CS21)|(1<<CS20))
1910 - 16
 
2099 - 17
#else
18
#define NEUTRAL_PULSELENGTH 3750
19
#define STABILIZATION_LOG_DIVIDER 4
20
#define SERVOLIMIT 2000
21
#define SCALE_FACTOR 16
22
#define CS2 (1<<CS21)
23
#endif
1910 - 24
 
2099 - 25
#define MAX_SERVOS 8
26
#define FRAMELEN ((NEUTRAL_PULSELENGTH + SERVOLIMIT) * staticParams.servoCount + 128)
27
#define MIN_PULSELENGTH (NEUTRAL_PULSELENGTH - SERVOLIMIT)
28
#define MAX_PULSELENGTH (NEUTRAL_PULSELENGTH + SERVOLIMIT)
29
 
30
volatile uint8_t recalculateServoTimes = 0;
31
volatile uint16_t servoValues[MAX_SERVOS];
32
volatile uint16_t previousManualValues[2];
33
 
34
#define HEF4017R_ON     PORTC |=  (1<<PORTC6)
35
#define HEF4017R_OFF    PORTC &= ~(1<<PORTC6)
36
 
1910 - 37
/*****************************************************
2099 - 38
 *              Initialize Timer 2
1910 - 39
 *****************************************************/
40
void timer2_init(void) {
2099 - 41
    uint8_t sreg = SREG;
1910 - 42
 
2099 - 43
    // disable all interrupts before reconfiguration
44
    cli();
45
 
46
    // set PD7 as output of the PWM for pitch servo
47
    DDRD |= (1 << DDD7);
48
    PORTD &= ~(1 << PORTD7); // set PD7 to low
49
 
50
    DDRC |= (1 << DDC6); // set PC6 as output (Reset for HEF4017)
51
    HEF4017R_ON; // enable reset
52
 
53
    // Timer/Counter 2 Control Register A
54
    // Timer Mode is CTC (Bits: WGM22 = 0, WGM21 = 1, WGM20 = 0)
55
    // PD7: Output OCR2 match, (Bits: COM2A1 = 1, COM2A0 = 0)
56
    // PD6: Normal port operation, OC2B disconnected, (Bits: COM2B1 = 0, COM2B0 = 0)
57
    TCCR2A &= ~((1 << COM2A0) | (1 << COM2B1) | (1 << COM2B0) | (1 << WGM20) | (1 << WGM22));
58
    TCCR2A |= (1 << COM2A1) | (1 << WGM21);
59
 
60
    // Timer/Counter 2 Control Register B
61
 
62
    // Set clock divider for timer 2 to 20MHz / 8 = 2.5 MHz
63
    // The timer increments from 0x00 to 0xFF with an update rate of 2.5 kHz or 0.4 us
64
    // hence the timer overflow interrupt frequency is 625 kHz / 256 = 9.765 kHz or 0.1024ms
65
 
66
    TCCR2B &= ~((1 << FOC2A) | (1 << FOC2B) | (1 << CS20) | (1 << CS21) | (1 << CS22));
67
    TCCR2B |= CS2;
68
 
69
    // Initialize the Timer/Counter 2 Register
70
    TCNT2 = 0;
71
 
72
    // Initialize the Output Compare Register A used for signal generation on port PD7.
73
    OCR2A = 255;
74
 
75
    // Timer/Counter 2 Interrupt Mask Register
76
    // Enable timer output compare match A Interrupt only
77
    TIMSK2 &= ~((1 << OCIE2B) | (1 << TOIE2));
78
    TIMSK2 |= (1 << OCIE2A);
79
 
80
    for (uint8_t axis=0; axis<2; axis++)
81
      previousManualValues[axis] = dynamicParams.servoManualControl[axis] * SCALE_FACTOR;
82
 
83
    SREG = sreg;
1910 - 84
}
85
 
86
/*****************************************************
2102 - 87
 * Control (camera gimbal etc.) servos
1910 - 88
 *****************************************************/
2099 - 89
int16_t calculateStabilizedServoAxis(uint8_t axis) {
90
  int32_t value = attitude[axis] >> STABILIZATION_LOG_DIVIDER; // between -500000 to 500000 extreme limits. Just about
91
  // With full blast on stabilization gain (255) we want to convert a delta of, say, 125000 to 2000.
92
  // That is a divisor of about 1<<14. Same conclusion as H&I.
93
  value *= staticParams.servoConfigurations[axis].stabilizationFactor;
94
  value = value >> 8;
95
  if (staticParams.servoConfigurations[axis].flags & SERVO_STABILIZATION_REVERSE)
96
    return -value;
97
  return value;
98
}
99
 
100
// With constant-speed limitation.
101
uint16_t calculateManualServoAxis(uint8_t axis, uint16_t manualValue) {
102
  int16_t diff = manualValue - previousManualValues[axis];
103
  uint8_t maxSpeed = staticParams.servoManualMaxSpeed;
104
  if (diff > maxSpeed) diff = maxSpeed;
105
  else if (diff < -maxSpeed) diff = -maxSpeed;
106
  manualValue = previousManualValues[axis] + diff;
107
  previousManualValues[axis] = manualValue;
108
  return manualValue;
109
}
110
 
111
// add stabilization and manual, apply soft position limits.
112
// All in a [0..255*SCALE_FACTOR] space (despite signed types used internally)
113
int16_t featuredServoValue(uint8_t axis) {
114
  int16_t value = calculateManualServoAxis(axis, dynamicParams.servoManualControl[axis] * SCALE_FACTOR);
115
  value += calculateStabilizedServoAxis(axis);
116
  int16_t limit = staticParams.servoConfigurations[axis].minValue * SCALE_FACTOR;
117
  if (value < limit) value = limit;
118
  limit = staticParams.servoConfigurations[axis].maxValue * SCALE_FACTOR;
119
  if (value > limit) value = limit;
120
  value -= (128 * SCALE_FACTOR);
121
  if (value < -SERVOLIMIT) value = -SERVOLIMIT;
122
  else if (value > SERVOLIMIT) value = SERVOLIMIT;
123
  // Shift into the [NEUTRAL_PULSELENGTH-SERVOLIMIT..NEUTRAL_PULSELENGTH+SERVOLIMIT] space.
124
  return value + NEUTRAL_PULSELENGTH;
125
}
126
 
2102 - 127
void calculateControlServoValues(void) {
128
  int16_t value;
2103 - 129
  for (uint8_t axis=0; axis<4; axis++) {
2102 - 130
        value = controlServos[axis];
2103 - 131
        value *= 2;
2102 - 132
        servoValues[axis] = value + NEUTRAL_PULSELENGTH;
133
  }
2103 - 134
  debugOut.analog[24] = servoValues[0];
135
  debugOut.analog[25] = servoValues[1];
136
  debugOut.analog[26] = servoValues[2];
137
  debugOut.analog[27] = servoValues[3];
2102 - 138
}
139
 
140
void calculateFeaturedServoValues(void) {
141
  int16_t value;
142
  uint8_t axis;
143
 
144
  // Save the computation cost of computing a new value before the old one is used.
2099 - 145
  if (!recalculateServoTimes) return;
2102 - 146
 
147
  for (axis=0; axis<2; axis++) {
148
        value = featuredServoValue(axis);
2103 - 149
        servoValues[axis + 4] = value;
2099 - 150
  }
2102 - 151
  for (axis=2; axis<MAX_SERVOS; axis++) {
152
        value = 128 * SCALE_FACTOR;
2103 - 153
        servoValues[axis + 4] = value;
2102 - 154
  }
155
 
2099 - 156
  recalculateServoTimes = 0;
157
}
158
 
1910 - 159
ISR(TIMER2_COMPA_vect) {
2099 - 160
  static uint16_t remainingPulseTime;
1910 - 161
  static uint8_t servoIndex = 0;
162
  static uint16_t sumOfPulseTimes = 0;
163
 
164
  if (!remainingPulseTime) {
165
    // Pulse is over, and the next pulse has already just started. Calculate length of next pulse.
2099 - 166
    if (servoIndex < staticParams.servoCount) {
1910 - 167
      // There are more signals to output.
2099 - 168
      sumOfPulseTimes += (remainingPulseTime = servoValues[servoIndex]);
1910 - 169
      servoIndex++;
170
    } else {
171
      // There are no more signals. Reset the counter and make this pulse cover the missing frame time.
172
      remainingPulseTime = FRAMELEN - sumOfPulseTimes;
173
      sumOfPulseTimes = servoIndex = 0;
2099 - 174
      recalculateServoTimes = 1;
175
      HEF4017R_ON;
1910 - 176
    }
177
  }
178
 
179
  // Schedule the next OCR2A event. The counter is already reset at this time.
2099 - 180
  if (remainingPulseTime > 256+128) {
181
    // Set output to reset to zero at next OCR match. It does not really matter when the output is set low again,
1910 - 182
    // as long as it happens once per pulse. This will, because all pulses are > 255+128 long.
2099 - 183
    OCR2A = 255;
1910 - 184
    TCCR2A &= ~(1<<COM2A0);
2099 - 185
    remainingPulseTime-=256;
186
  } else if (remainingPulseTime > 256) {
187
    // Remaining pulse lengths in the range [256..256+128] might cause trouble if handled the standard
188
    // way, which is in chunks of 256. The remainder would be very small, possibly causing an interrupt on interrupt
1910 - 189
    // condition. Instead we now make a chunk of 128. The remaining chunk will then be in [128..255] which is OK.
2099 - 190
    remainingPulseTime-=128;
191
    OCR2A=127;
1910 - 192
  } else {
193
    // Set output to high at next OCR match. This is when the 4017 counter will advance by one. Also set reset low
194
    TCCR2A |= (1<<COM2A0);
2099 - 195
    OCR2A = remainingPulseTime-1;
196
    remainingPulseTime=0;
197
    HEF4017R_OFF; // implement servo-disable here, by only removing the reset signal if ServoEnabled!=0.
1910 - 198
  }
199
}