Subversion Repositories FlightCtrl

Rev

Rev 1927 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
/*********************************************************************************/
2
/* Attitude sense system (processing of gyro, accelerometer and altimeter data)  */
3
/*********************************************************************************/
4
 
5
#ifndef _ATTITUDE_H
6
#define _ATTITUDE_H
7
 
8
#include <inttypes.h>
9
 
10
#include "analog.h"
11
 
12
// For debugging only.
13
#include "uart0.h"
14
 
15
/*
16
 * If you have no acc. sensor or do not want to use it, remove this define. This will cause the
17
 * acc. sensor to be ignored at attitude calibration.
18
 */
2099 - 19
//#define ATTITUDE_USE_ACC_SENSORS yes
1910 - 20
 
21
/*
22
 * The frequency at which numerical integration takes place. 488 in original code.
23
 */
24
#define INTEGRATION_FREQUENCY 488
25
 
26
/*
27
 * Constant for deriving an attitude angle from acceleration measurement.
28
 *
29
 * The value is derived from the datasheet of the ACC sensor where 5g are scaled to VRef.
30
 * 1g is (3V * 1024) / (5 * 3V) = 205 counts. The ADC ISR sums 2 acc. samples to each
31
 * [pitch/roll]AxisAcc and thus reads about acc = 410 counts / g.
32
 * We approximate a small pitch/roll angle v by assuming that the copter does not accelerate:
33
 * In this explanation it is assumed that the ADC values are 0 based, and gravity is included.
34
 * The sine of v is the far side / the hypothenusis:
35
 * sin v = acc / sqrt(acc^2 + acc_z^2)
36
 * Using that v is a small angle, and the near side is about equal to the the hypothenusis:
37
 * sin v ~= acc / acc_z
38
 * Assuming that the helicopter is hovering at small pitch and roll angles, acc_z is about 410,
39
 * and sin v ~= v (small angles, in radians):
40
 * sin v ~= acc / 410
41
 * v / 57.3 ~= acc / 410
42
 * v ~= acc * 57.3 / 410
43
 * acc / v ~= 410 / 57.3 ~= 7, that is: There are about 7 counts per degree.
44
 *
45
 * Summary: DEG_ACC_FACTOR = (2 * 1024 * [sensitivity of acc. meter in V/g]) / (3V * 57.3)
46
 */
47
#define DEG_ACC_FACTOR 7
48
 
49
/*
50
 * Growth of the integral per degree:
51
 * The hiResXXXX value per deg / s * INTEGRATION_FREQUENCY samples / sec * correction / a number divided by
52
 * HIRES_GYRO_INTEGRATION_FACTOR (why???) before integration.
53
 * The value of this expression should be about 1250 (by setting HIRES_GYRO_INTEGRATION_FACTOR to something suitable).
54
 */
2099 - 55
#define GYRO_DEG_FACTOR (GYRO_RATE_FACTOR * INTEGRATION_FREQUENCY * GYRO_CORRECTION)
1910 - 56
 
57
/*
58
 * This is ([gyro integral value] / degree) / (degree / acc. sensor value) = gyro integral value / acc.sensor value
59
 * = the factor an acc. sensor should be multiplied by to get the gyro integral
60
 * value for the same (small) angle.
61
 * The value is about 200.
62
 */
2099 - 63
//#define GYRO_ACC_FACTOR ((GYRO_DEG_FACTOR_PITCHROLL) / (DEG_ACC_FACTOR))
1910 - 64
 
2099 - 65
#define OVER180 ((int32_t)GYRO_DEG_FACTOR * 180)
66
#define OVER360 ((int32_t)GYRO_DEG_FACTOR * 360)
1910 - 67
 
68
/*
69
 * Rotation rates
70
 */
2099 - 71
extern int16_t rate_PID[3], rate_ATT[3];
1910 - 72
extern int16_t differential[3];
73
 
74
/*
75
 * Attitudes calculated by numerical integration of gyro rates
76
 */
2099 - 77
extern int32_t attitude[3];
1910 - 78
 
2099 - 79
// extern volatile int32_t ReadingIntegralTop; // calculated in analog.c
80
 
1910 - 81
/*
2099 - 82
 * Compass navigation
83
 */
84
// extern int16_t compassHeading;
85
// extern int16_t compassCourse;
86
// extern int16_t compassOffCourse;
87
// extern uint8_t compassCalState;
88
// extern int32_t yawGyroHeading;
89
// extern int16_t yawGyroHeadingInDeg;
90
// extern uint8_t updateCompassCourse;
91
// extern uint16_t ignoreCompassTimer;
92
 
93
/*
1910 - 94
 * Dynamic gyro offsets. These are signed values that are subtracted from the gyro measurements,
95
 * to help canceling out drift and vibration noise effects. The dynamic offsets themselves
96
 * can be updated in flight by different ways, for example:
97
 * - Just taking them from parameters, so the pilot can trim manually in a PC or mobile tool
98
 * - Summing up how much acc. meter correction was done to the gyro integrals over the last n
99
 *   integration, and then adding the sum / n to the dynamic offset
100
 * - Detect which way the pilot pulls the stick to keep the copter steady, and correct by that
101
 * - Invent your own...
102
 */
2099 - 103
// extern int16_t dynamicOffset[2], dynamicOffsetYaw;
1910 - 104
 
105
/*
106
 * For NaviCtrl use.
107
 */
2099 - 108
// extern int16_t averageAcc[2], averageAccCount;
1910 - 109
 
110
/*
111
 * Re-init flight attitude, setting all angles to 0 (or to whatever can be derived from acc. sensor).
112
 * To be called when the pilot commands gyro calibration (eg. by moving the left stick up-left or up-right).
113
 */
114
void attitude_setNeutral(void);
115
 
116
/*
117
 * Experiment.
118
 */
119
// void attitude_startDynamicCalibration(void);
120
// void attitude_continueDynamicCalibration(void);
121
 
122
int32_t getAngleEstimateFromAcc(uint8_t axis);
123
 
124
/*
125
 * Main routine, called from the flight loop.
126
 */
127
void calculateFlightAttitude(void);
128
#endif //_ATTITUDE_H