Subversion Repositories FlightCtrl

Rev

Rev 2096 | Rev 2102 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2096 - 1
#include <avr/io.h>
1910 - 2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
2096 - 4
#include <stdlib.h>
1910 - 5
 
6
#include "analog.h"
7
#include "attitude.h"
8
#include "sensors.h"
2096 - 9
#include "printf_P.h"
1910 - 10
 
11
// for Delay functions
12
#include "timer0.h"
13
 
14
// For reading and writing acc. meter offsets.
15
#include "eeprom.h"
16
 
2096 - 17
// For debugOut
1910 - 18
#include "output.h"
19
 
2096 - 20
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
21
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
22
 
23
const char* recal = ", recalibration needed.";
24
 
1910 - 25
/*
26
 * For each A/D conversion cycle, each analog channel is sampled a number of times
27
 * (see array channelsForStates), and the results for each channel are summed.
28
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
29
 * They are exported in the analog.h file - but please do not use them! The only
30
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
31
 * the offsets with the DAC.
32
 */
2096 - 33
volatile uint16_t sensorInputs[8];
2099 - 34
//int16_t acc[3];
35
//int16_t filteredAcc[3] = { 0,0,0 };
1910 - 36
 
37
/*
38
 * These 4 exported variables are zero-offset. The "PID" ones are used
39
 * in the attitude control as rotation rates. The "ATT" ones are for
40
 * integration to angles.
41
 */
2099 - 42
int16_t gyro_PID[3];
43
int16_t gyro_ATT[3];
44
int16_t gyroD[3];
2096 - 45
int16_t gyroDWindow[2][GYRO_D_WINDOW_LENGTH];
46
uint8_t gyroDWindowIdx = 0;
47
int16_t dHeight;
48
uint32_t gyroActivity;
49
 
1910 - 50
/*
51
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
52
 * standing still. They are used for adjusting the gyro and acc. meter values
53
 * to be centered on zero.
54
 */
55
 
2096 - 56
sensorOffset_t gyroOffset;
57
sensorOffset_t accOffset;
58
sensorOffset_t gyroAmplifierOffset;
1910 - 59
 
60
/*
2096 - 61
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
62
 * If a sensor is used in an orientation where one but not both of the axes has
63
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
64
 * Transform:
65
 * pitch <- pp*pitch + pr*roll
66
 * roll  <- rp*pitch + rr*roll
67
 * Not reversed, GYRO_QUADRANT:
68
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
69
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
70
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
71
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
72
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
73
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
74
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
75
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
76
 * Reversed, GYRO_QUADRANT:
77
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
78
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
79
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
80
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
81
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
82
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
83
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
84
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
85
 */
86
 
2099 - 87
void rotate(int16_t* result, uint8_t quadrant, uint8_t reversePR, uint8_t reverseYaw) {
2096 - 88
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
89
  // Pitch to Pitch part
2099 - 90
  int8_t xx = reversePR ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
2096 - 91
  // Roll to Pitch part
92
  int8_t xy = rotationTab[(quadrant+2)%8];
93
  // Pitch to Roll part
2099 - 94
  int8_t yx = reversePR ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
2096 - 95
  // Roll to Roll part
96
  int8_t yy = rotationTab[quadrant];
97
 
98
  int16_t xIn = result[0];
99
  result[0] = xx*xIn + xy*result[1];
100
  result[1] = yx*xIn + yy*result[1];
101
 
102
  if (quadrant & 1) {
103
        // A rotation was used above, where the factors were too large by sqrt(2).
104
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
105
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
106
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
107
        result[0] = (result[0]*11) >> 4;
108
        result[1] = (result[1]*11) >> 4;
109
  }
2099 - 110
 
111
  if (reverseYaw)
112
    result[3] =-result[3];
2096 - 113
}
114
 
115
/*
2099 - 116
 * Airspeed
1910 - 117
 */
2096 - 118
uint16_t simpleAirPressure;
1910 - 119
 
2096 - 120
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
2099 - 121
// int32_t filteredAirPressure;
1910 - 122
 
2096 - 123
#define MAX_AIRPRESSURE_WINDOW_LENGTH 32
124
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
125
int32_t windowedAirPressure;
126
uint8_t windowPtr = 0;
127
 
1910 - 128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
2096 - 129
int32_t airPressureSum;
1910 - 130
 
131
// The number of samples summed into airPressureSum so far.
2096 - 132
uint8_t pressureMeasurementCount;
1910 - 133
 
2099 - 134
 
1910 - 135
/*
136
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
137
 * That is divided by 3 below, for a final 10.34 per volt.
138
 * So the initial value of 100 is for 9.7 volts.
139
 */
2096 - 140
int16_t UBat = 100;
1910 - 141
 
142
/*
143
 * Control and status.
144
 */
145
volatile uint8_t analogDataReady = 1;
146
 
147
/*
148
 * Experiment: Measuring vibration-induced sensor noise.
149
 */
2096 - 150
uint16_t gyroNoisePeak[3];
1910 - 151
 
2096 - 152
volatile uint8_t adState;
153
volatile uint8_t adChannel;
154
 
1910 - 155
// ADC channels
156
#define AD_GYRO_YAW       0
157
#define AD_GYRO_ROLL      1
158
#define AD_GYRO_PITCH     2
159
#define AD_AIRPRESSURE    3
160
#define AD_UBAT           4
161
#define AD_ACC_Z          5
162
#define AD_ACC_ROLL       6
163
#define AD_ACC_PITCH      7
164
 
165
/*
166
 * Table of AD converter inputs for each state.
167
 * The number of samples summed for each channel is equal to
168
 * the number of times the channel appears in the array.
169
 * The max. number of samples that can be taken in 2 ms is:
170
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
171
 * loop needs a little time between reading AD values and
172
 * re-enabling ADC, the real limit is (how much?) lower.
173
 * The acc. sensor is sampled even if not used - or installed
174
 * at all. The cost is not significant.
175
 */
176
 
177
const uint8_t channelsForStates[] PROGMEM = {
2099 - 178
  AD_GYRO_PITCH,
179
  AD_GYRO_ROLL,
180
  AD_GYRO_YAW,
1910 - 181
 
2099 - 182
  AD_AIRPRESSURE,
183
 
184
  AD_GYRO_PITCH,
185
  AD_GYRO_ROLL,
186
  AD_GYRO_YAW,
187
 
188
  AD_UBAT,
189
 
190
  AD_GYRO_PITCH,
191
  AD_GYRO_ROLL,
192
  AD_GYRO_YAW,
1910 - 193
 
2099 - 194
  AD_AIRPRESSURE,
1910 - 195
 
2099 - 196
  AD_GYRO_PITCH,
197
  AD_GYRO_ROLL,
198
  AD_GYRO_YAW
1910 - 199
};
200
 
201
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
202
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
203
 
204
void analog_init(void) {
205
        uint8_t sreg = SREG;
206
        // disable all interrupts before reconfiguration
207
        cli();
208
 
209
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
210
        DDRA = 0x00;
211
        PORTA = 0x00;
212
        // Digital Input Disable Register 0
213
        // Disable digital input buffer for analog adc_channel pins
214
        DIDR0 = 0xFF;
215
        // external reference, adjust data to the right
2096 - 216
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1910 - 217
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
2096 - 218
        ADMUX = (ADMUX & 0xE0);
1910 - 219
        //Set ADC Control and Status Register A
220
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
2096 - 221
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1910 - 222
        //Set ADC Control and Status Register B
223
        //Trigger Source to Free Running Mode
2096 - 224
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
225
 
226
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
227
          airPressureWindow[i] = 0;
228
        }
229
    windowedAirPressure = 0;
230
 
231
        startAnalogConversionCycle();
232
 
1910 - 233
        // restore global interrupt flags
234
        SREG = sreg;
235
}
236
 
2096 - 237
uint16_t rawGyroValue(uint8_t axis) {
238
        return sensorInputs[AD_GYRO_PITCH-axis];
239
}
240
 
2099 - 241
/*
2096 - 242
uint16_t rawAccValue(uint8_t axis) {
243
        return sensorInputs[AD_ACC_PITCH-axis];
244
}
2099 - 245
*/
2096 - 246
 
1910 - 247
void measureNoise(const int16_t sensor,
248
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
249
        if (sensor > (int16_t) (*noiseMeasurement)) {
250
                *noiseMeasurement = sensor;
251
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
252
                *noiseMeasurement = -sensor;
253
        } else if (*noiseMeasurement > damping) {
254
                *noiseMeasurement -= damping;
255
        } else {
256
                *noiseMeasurement = 0;
257
        }
258
}
259
 
260
/*
261
 * Min.: 0
262
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
263
 */
264
uint16_t getSimplePressure(int advalue) {
2099 - 265
        return advalue;
1910 - 266
}
267
 
2096 - 268
void startAnalogConversionCycle(void) {
269
  analogDataReady = 0;
270
 
271
  // Stop the sampling. Cycle is over.
272
  for (uint8_t i = 0; i < 8; i++) {
273
    sensorInputs[i] = 0;
274
  }
275
  adState = 0;
276
  adChannel = AD_GYRO_PITCH;
277
  ADMUX = (ADMUX & 0xE0) | adChannel;
278
  startADC();
1910 - 279
}
280
 
281
/*****************************************************
282
 * Interrupt Service Routine for ADC
2096 - 283
 * Runs at 312.5 kHz or 3.2 �s. When all states are
284
 * processed further conversions are stopped.
1910 - 285
 *****************************************************/
286
ISR(ADC_vect) {
2096 - 287
  sensorInputs[adChannel] += ADC;
288
  // set up for next state.
289
  adState++;
290
  if (adState < sizeof(channelsForStates)) {
291
    adChannel = pgm_read_byte(&channelsForStates[adState]);
292
    // set adc muxer to next adChannel
293
    ADMUX = (ADMUX & 0xE0) | adChannel;
294
    // after full cycle stop further interrupts
295
    startADC();
296
  } else {
297
    analogDataReady = 1;
298
    // do not restart ADC converter. 
299
  }
300
}
1910 - 301
 
2099 - 302
/*
2096 - 303
void measureGyroActivity(int16_t newValue) {
304
  gyroActivity += (uint32_t)((int32_t)newValue * newValue);
305
}
1910 - 306
 
2096 - 307
#define GADAMPING 6
308
void dampenGyroActivity(void) {
309
  static uint8_t cnt = 0;
310
  if (++cnt >= IMUConfig.gyroActivityDamping) {
311
    cnt = 0;
312
    gyroActivity *= (uint32_t)((1L<<GADAMPING)-1);
313
    gyroActivity >>= GADAMPING;
314
  }
315
}
316
*/
1910 - 317
 
2096 - 318
void analog_updateGyros(void) {
319
  // for various filters...
2099 - 320
  int16_t tempOffsetGyro[3], tempGyro;
2096 - 321
 
322
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
2099 - 323
  for (uint8_t axis=0; axis<3; axis++) {
2096 - 324
    tempGyro = rawGyroValue(axis);
325
    /*
326
     * Process the gyro data for the PID controller.
327
     */
328
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
329
    //    gyro with a wider range, and helps counter saturation at full control.
330
 
331
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
2099 - 332
      if (tempGyro < SENSOR_MIN) {
2096 - 333
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
334
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
2099 - 335
      } else if (tempGyro > SENSOR_MAX) {
2096 - 336
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
2099 - 337
                tempGyro = (tempGyro - SENSOR_MAX) * EXTRAPOLATION_SLOPE + SENSOR_MAX;
2096 - 338
      }
339
    }
1910 - 340
 
2096 - 341
    // 2) Apply sign and offset, scale before filtering.
2099 - 342
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]);
2096 - 343
  }
1910 - 344
 
2096 - 345
  // 2.1: Transform axes.
2099 - 346
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
1910 - 347
 
2099 - 348
  for (uint8_t axis=0; axis<3; axis++) {
2096 - 349
        // 3) Filter.
350
    tempOffsetGyro[axis] = (gyro_PID[axis] * (IMUConfig.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / IMUConfig.gyroPIDFilterConstant;
1910 - 351
 
2096 - 352
    // 4) Measure noise.
353
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
1910 - 354
 
2096 - 355
    // 5) Differential measurement.
356
    // gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
357
    int16_t diff = tempOffsetGyro[axis] - gyro_PID[axis];
358
    gyroD[axis] -= gyroDWindow[axis][gyroDWindowIdx];
359
    gyroD[axis] += diff;
360
    gyroDWindow[axis][gyroDWindowIdx] = diff;
1910 - 361
 
2096 - 362
    // 6) Done.
363
    gyro_PID[axis] = tempOffsetGyro[axis];
1910 - 364
 
2096 - 365
    // Prepare tempOffsetGyro for next calculation below...
2099 - 366
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]);
2096 - 367
  }
1910 - 368
 
2096 - 369
  /*
370
   * Now process the data for attitude angles.
371
   */
2099 - 372
  rotate(tempOffsetGyro, IMUConfig.gyroQuadrant, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_PR, IMUConfig.imuReversedFlags & IMU_REVERSE_GYRO_YAW);
1910 - 373
 
2099 - 374
  // dampenGyroActivity();
375
  gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
376
  gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
1910 - 377
 
2099 - 378
  /*
379
  measureGyroActivity(gyroD[PITCH]);
380
  measureGyroActivity(gyroD[ROLL]);
2096 - 381
  measureGyroActivity(yawGyro);
2099 - 382
  */
1910 - 383
 
2096 - 384
  if (++gyroDWindowIdx >= IMUConfig.gyroDWindowLength) {
385
      gyroDWindowIdx = 0;
386
  }
387
}
1910 - 388
 
2096 - 389
void analog_updateAirPressure(void) {
2099 - 390
  uint16_t rawAirPressure = sensorInputs[AD_AIRPRESSURE];
391
  simpleAirPressure = rawAirPressure;
2096 - 392
}
1910 - 393
 
2096 - 394
void analog_updateBatteryVoltage(void) {
395
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
396
  // This is divided by 3 --> 10.34 counts per volt.
397
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1910 - 398
}
399
 
2096 - 400
void analog_update(void) {
401
  analog_updateGyros();
2099 - 402
  // analog_updateAccelerometers();
2096 - 403
  analog_updateAirPressure();
404
  analog_updateBatteryVoltage();
405
#ifdef USE_MK3MAG
406
  magneticHeading = volatileMagneticHeading;
407
#endif
2099 - 408
 
2096 - 409
}
1910 - 410
 
2096 - 411
void analog_setNeutral() {
412
  gyro_init();
413
 
414
  if (gyroOffset_readFromEEProm()) {
415
    printf("gyro offsets invalid%s",recal);
2099 - 416
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING;
417
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING;
2096 - 418
  }
2099 - 419
 
420
  /*
2096 - 421
  if (accOffset_readFromEEProm()) {
422
    printf("acc. meter offsets invalid%s",recal);
423
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
424
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
425
  }
2099 - 426
  */
1910 - 427
 
2096 - 428
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
2099 - 429
  for (uint8_t i=PITCH; i<=YAW; i++) {
2096 - 430
          gyroNoisePeak[i] = 0;
431
          gyroD[i] = 0;
432
          for (uint8_t j=0; j<GYRO_D_WINDOW_LENGTH; j++) {
433
                  gyroDWindow[i][j] = 0;
434
          }
435
  }
436
  // Setting offset values has an influence in the analog.c ISR
437
  // Therefore run measurement for 100ms to achive stable readings
438
  delay_ms_with_adc_measurement(100, 0);
1910 - 439
 
2096 - 440
  gyroActivity = 0;
441
}
1910 - 442
 
2096 - 443
void analog_calibrateGyros(void) {
444
#define GYRO_OFFSET_CYCLES 32
445
  uint8_t i, axis;
446
  int32_t offsets[3] = { 0, 0, 0 };
447
  gyro_calibrate();
448
 
449
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
450
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
451
    delay_ms_with_adc_measurement(10, 1);
452
    for (axis = PITCH; axis <= YAW; axis++) {
453
      offsets[axis] += rawGyroValue(axis);
454
    }
455
  }
456
 
457
  for (axis = PITCH; axis <= YAW; axis++) {
458
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
1910 - 459
 
2099 - 460
    int16_t min = (512-200) * GYRO_OVERSAMPLING;
461
    int16_t max = (512+200) * GYRO_OVERSAMPLING;
2096 - 462
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
463
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
464
  }
1910 - 465
 
2096 - 466
  gyroOffset_writeToEEProm();  
467
  startAnalogConversionCycle();
1910 - 468
}