Subversion Repositories FlightCtrl

Rev

Rev 1927 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
1910 - 1
#include <avr/io.h>
2
#include <avr/interrupt.h>
3
#include <avr/pgmspace.h>
4
 
5
#include "analog.h"
6
#include "attitude.h"
7
#include "sensors.h"
8
 
9
// for Delay functions
10
#include "timer0.h"
11
 
12
// For DebugOut
13
#include "uart0.h"
14
 
15
// For reading and writing acc. meter offsets.
16
#include "eeprom.h"
17
 
18
// For DebugOut.Digital
19
#include "output.h"
20
 
21
/*
22
 * For each A/D conversion cycle, each analog channel is sampled a number of times
23
 * (see array channelsForStates), and the results for each channel are summed.
24
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
25
 * They are exported in the analog.h file - but please do not use them! The only
26
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
27
 * the offsets with the DAC.
28
 */
29
volatile int16_t rawGyroSum[3];
30
volatile int16_t acc[3];
31
volatile int16_t filteredAcc[2] = { 0,0 };
32
 
33
/*
34
 * These 4 exported variables are zero-offset. The "PID" ones are used
35
 * in the attitude control as rotation rates. The "ATT" ones are for
36
 * integration to angles.
37
 */
38
volatile int16_t gyro_PID[2];
39
volatile int16_t gyro_ATT[2];
40
volatile int16_t gyroD[3];
41
volatile int16_t yawGyro;
42
 
43
/*
44
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
45
 * standing still. They are used for adjusting the gyro and acc. meter values
46
 * to be centered on zero.
47
 */
48
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
49
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
50
 
51
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
52
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
53
 
54
/*
55
 * This allows some experimentation with the gyro filters.
56
 * Should be replaced by #define's later on...
57
 */
58
volatile uint8_t GYROS_PID_FILTER;
59
volatile uint8_t GYROS_ATT_FILTER;
60
volatile uint8_t GYROS_D_FILTER;
61
volatile uint8_t ACC_FILTER;
62
 
63
/*
64
 * Air pressure
65
 */
66
volatile uint8_t rangewidth = 106;
67
 
68
// Direct from sensor, irrespective of range.
69
// volatile uint16_t rawAirPressure;
70
 
71
// Value of 2 samples, with range.
72
volatile uint16_t simpleAirPressure;
73
 
74
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
75
volatile int32_t filteredAirPressure;
76
 
77
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
78
volatile int32_t airPressureSum;
79
 
80
// The number of samples summed into airPressureSum so far.
81
volatile uint8_t pressureMeasurementCount;
82
 
83
/*
84
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
85
 * That is divided by 3 below, for a final 10.34 per volt.
86
 * So the initial value of 100 is for 9.7 volts.
87
 */
88
volatile int16_t UBat = 100;
89
 
90
/*
91
 * Control and status.
92
 */
93
volatile uint16_t ADCycleCount = 0;
94
volatile uint8_t analogDataReady = 1;
95
 
96
/*
97
 * Experiment: Measuring vibration-induced sensor noise.
98
 */
99
volatile uint16_t gyroNoisePeak[2];
100
volatile uint16_t accNoisePeak[2];
101
 
102
// ADC channels
103
#define AD_GYRO_YAW       0
104
#define AD_GYRO_ROLL      1
105
#define AD_GYRO_PITCH     2
106
#define AD_AIRPRESSURE    3
107
#define AD_UBAT           4
108
#define AD_ACC_Z          5
109
#define AD_ACC_ROLL       6
110
#define AD_ACC_PITCH      7
111
 
112
/*
113
 * Table of AD converter inputs for each state.
114
 * The number of samples summed for each channel is equal to
115
 * the number of times the channel appears in the array.
116
 * The max. number of samples that can be taken in 2 ms is:
117
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
118
 * loop needs a little time between reading AD values and
119
 * re-enabling ADC, the real limit is (how much?) lower.
120
 * The acc. sensor is sampled even if not used - or installed
121
 * at all. The cost is not significant.
122
 */
123
 
124
const uint8_t channelsForStates[] PROGMEM = {
125
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
126
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
127
 
128
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
129
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
130
 
131
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
132
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
133
  AD_AIRPRESSURE, // at 14, finish air pressure.
134
 
135
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
136
  AD_GYRO_ROLL,   // at 16, finish roll gyro
137
  AD_UBAT         // at 17, measure battery.
138
};
139
 
140
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
141
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
142
 
143
void analog_init(void) {
144
        uint8_t sreg = SREG;
145
        // disable all interrupts before reconfiguration
146
        cli();
147
 
148
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
149
        DDRA = 0x00;
150
        PORTA = 0x00;
151
        // Digital Input Disable Register 0
152
        // Disable digital input buffer for analog adc_channel pins
153
        DIDR0 = 0xFF;
154
        // external reference, adjust data to the right
155
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
156
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
157
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
158
        //Set ADC Control and Status Register A
159
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
160
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
161
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
162
        //Set ADC Control and Status Register B
163
        //Trigger Source to Free Running Mode
164
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
165
        // Start AD conversion
166
        analog_start();
167
        // restore global interrupt flags
168
        SREG = sreg;
169
}
170
 
171
void measureNoise(const int16_t sensor,
172
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
173
        if (sensor > (int16_t) (*noiseMeasurement)) {
174
                *noiseMeasurement = sensor;
175
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
176
                *noiseMeasurement = -sensor;
177
        } else if (*noiseMeasurement > damping) {
178
                *noiseMeasurement -= damping;
179
        } else {
180
                *noiseMeasurement = 0;
181
        }
182
}
183
 
184
/*
185
 * Min.: 0
186
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
187
 */
188
uint16_t getSimplePressure(int advalue) {
189
  return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
190
}
191
 
192
void transformPRGyro(int16_t* result) {
193
  static const uint8_t tab[] = {1,1,0,0-1,-1,-1,0,1};
194
  int8_t pp = GYROS_REVERSED ? tab[(GYRO_QUADRANT+4)%8] : tab[GYRO_QUADRANT];
195
  int8_t pr = tab[(GYRO_QUADRANT+2)%8];
196
  int8_t rp = GYROS_REVERSED ? tab[(GYRO_QUADRANT+2)%8] : tab[(GYRO_QUADRANT+6)%8];
197
  int8_t rr = tab[GYRO_QUADRANT];
198
 
199
  int16_t temp = result[0];
200
  result[0] = pp*result[0] + pr*result[1];
201
  result[1] = rp*temp + rr*result[1];
202
}
203
 
204
/*****************************************************
205
 * Interrupt Service Routine for ADC
206
 * Runs at 312.5 kHz or 3.2 µs. When all states are
207
 * processed the interrupt is disabled and further
208
 * AD conversions are stopped.
209
 *****************************************************/
210
ISR(ADC_vect) {
211
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
212
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
213
        static uint16_t pressureAutorangingWait = 25;
214
        uint16_t rawAirPressure;
215
        uint8_t i, axis;
216
        int16_t newrange;
217
 
218
        // for various filters...
219
        int16_t tempOffsetGyro[2];
220
 
221
        sensorInputs[ad_channel] += ADC;
222
 
223
        /*
224
         * Actually we don't need this "switch". We could do all the sampling into the
225
         * sensorInputs array first, and all the processing after the last sample.
226
         */
227
        switch (state++) {
228
 
229
        case 8: // Z acc
230
                if (Z_ACC_REVERSED)
231
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
232
                else
233
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
234
 
235
                /*
236
        stronglyFilteredAcc[Z] =
237
            (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
238
        */
239
 
240
                break;
241
 
242
        case 11: // yaw gyro
243
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
244
                if (YAW_REVERSED)
245
                  tempOffsetGyro[0] = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
246
                else
247
                  tempOffsetGyro[0] = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
248
                gyroD[YAW] = (gyroD[YAW] * (GYROS_D_FILTER - 1) + (tempOffsetGyro[0] - yawGyro)) / GYROS_D_FILTER;
249
                yawGyro = tempOffsetGyro[0];
250
                break;         
251
    case 13: // roll axis acc.
252
            /*            
253
            for (axis=0; axis<2; axis++) {
254
                if (ACC_REVERSED[axis])
255
                        tempSensor[axis] = accOffset[axis] - sensorInputs[AD_ACC_PITCH-axis];
256
                else
257
                        tempSensor[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset[axis];
258
            }
259
            if (AXIS_TRANSFORM) {
260
                acc[PITCH] = tempSensor[PITCH] + tempSensor[ROLL];
261
                acc[ROLL] = tempSensor[ROLL] - tempSensor[PITCH];
262
            } else {
263
                acc[PITCH] = tempSensor[PITCH];
264
                acc[ROLL] = tempSensor[ROLL];
265
            }
266
            */
267
 
268
            // We have no sensor installed...
269
            acc[PITCH] = acc[ROLL] = 0;
270
 
271
            for (axis=0; axis<2; axis++) {
272
        filteredAcc[axis] =
273
                    (filteredAcc[axis] * (ACC_FILTER - 1) + acc[axis]) / ACC_FILTER;
274
                measureNoise(acc[axis], &accNoisePeak[axis], 1);
275
            }
276
                break;
277
 
278
        case 14: // air pressure
279
                if (pressureAutorangingWait) {
280
                        //A range switch was done recently. Wait for steadying.
281
                        pressureAutorangingWait--;
282
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
283
                        DebugOut.Analog[31] = simpleAirPressure;
284
                        break;
285
                }
286
 
287
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
288
                if (rawAirPressure < MIN_RAWPRESSURE) {
289
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
290
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
291
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
292
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
293
                                OCR0A = newrange;
294
                        } else {
295
                                if (OCR0A) {
296
                                        OCR0A--;
297
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
298
                                }
299
                        }
300
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
301
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
302
                        // If near the end, make a limited increase
303
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
304
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
305
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
306
                                OCR0A = newrange;
307
                        } else {
308
                                if (OCR0A < 254) {
309
                                        OCR0A++;
310
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
311
                                }
312
                        }
313
                }
314
 
315
                // Even if the sample is off-range, use it.
316
                simpleAirPressure = getSimplePressure(rawAirPressure);
317
                DebugOut.Analog[27] = (uint16_t) OCR0A;
318
                DebugOut.Analog[31] = simpleAirPressure;
319
 
320
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
321
                        // Danger: pressure near lower end of range. If the measurement saturates, the
322
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
323
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
324
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
325
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
326
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
327
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
328
                        // Danger: pressure near upper end of range. If the measurement saturates, the
329
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
330
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
331
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
332
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
333
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
334
                } else {
335
                        // normal case.
336
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
337
                        // The 2 cases above (end of range) are ignored for this.
338
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
339
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
340
                                airPressureSum += simpleAirPressure / 2;
341
                        else
342
                                airPressureSum += simpleAirPressure;
343
                }
344
 
345
                // 2 samples were added.
346
                pressureMeasurementCount += 2;
347
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
348
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
349
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
350
                        pressureMeasurementCount = airPressureSum = 0;
351
                }
352
 
353
                break;
354
 
355
    case 16: // pitch and roll gyro.
356
            for (axis=0; axis<2; axis++) {
357
                tempOffsetGyro[axis] = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
358
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
359
                //    gyro with a wider range, and helps counter saturation at full control.
360
 
361
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
362
                  if (tempOffsetGyro[axis] < SENSOR_MIN_PITCHROLL) {
363
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
364
                                tempOffsetGyro[axis] = tempOffsetGyro[axis] * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
365
                        } else if (tempOffsetGyro[axis] > SENSOR_MAX_PITCHROLL) {
366
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
367
                                tempOffsetGyro[axis] = (tempOffsetGyro[axis] - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
368
                        } else {
369
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
370
                        }
371
                }
372
 
373
                // 2) Apply sign and offset, scale before filtering.
374
                tempOffsetGyro[axis] = (tempOffsetGyro[axis] - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
375
            }
376
 
377
        // 2.1: Transform axis if configured to.
378
            transformPRGyro(tempOffsetGyro);
379
 
380
                // 3) Scale and filter.
381
            for (axis=0; axis<2; axis++) {
382
                tempOffsetGyro[axis] = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro[axis]) / GYROS_PID_FILTER;
383
 
384
                // 4) Measure noise.
385
                measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
386
 
387
                // 5) Differential measurement.
388
                gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / GYROS_D_FILTER;
389
 
390
                // 6) Done.
391
                gyro_PID[axis] = tempOffsetGyro[axis];
392
            }
393
 
394
                /*
395
                 * Now process the data for attitude angles.
396
                 */
397
            for (axis=0; axis<2; axis++) {
398
              tempOffsetGyro[axis] = (rawGyroSum[axis] - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
399
            }
400
 
401
            transformPRGyro(tempOffsetGyro);
402
 
403
            // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
404
            gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro[PITCH]) / GYROS_ATT_FILTER;
405
            gyro_ATT[ROLL] = (gyro_ATT[ROLL] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro[ROLL]) / GYROS_ATT_FILTER;
406
            break;
407
 
408
        case 17:
409
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
410
                // This is divided by 3 --> 10.34 counts per volt.
411
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
412
                DebugOut.Analog[20] = UBat;
413
                analogDataReady = 1; // mark
414
                ADCycleCount++;
415
                // Stop the sampling. Cycle is over.
416
                state = 0;
417
                for (i = 0; i < 8; i++) {
418
                        sensorInputs[i] = 0;
419
                }
420
                break;
421
        default: {
422
        } // do nothing.
423
        }
424
 
425
        // set up for next state.
426
        ad_channel = pgm_read_byte(&channelsForStates[state]);
427
        // ad_channel = channelsForStates[state];
428
 
429
        // set adc muxer to next ad_channel
430
        ADMUX = (ADMUX & 0xE0) | ad_channel;
431
        // after full cycle stop further interrupts
432
        if (state)
433
                analog_start();
434
}
435
 
436
void analog_calibrate(void) {
437
#define GYRO_OFFSET_CYCLES 32
438
        uint8_t i, axis;
439
        int32_t deltaOffsets[3] = { 0, 0, 0 };
440
 
441
        // Set the filters... to be removed again, once some good settings are found.
442
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & (0x7 & (1<<0))) + 1;
443
        GYROS_ATT_FILTER = 1;
444
        GYROS_D_FILTER =   (dynamicParams.UserParams[4] & (0x3 & (1<<4))) + 1;
445
        ACC_FILTER =       (dynamicParams.UserParams[4] & (0x3 & (1<<6))) + 1;
446
 
447
        gyro_calibrate();
448
 
449
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
450
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
451
                delay_ms_Mess(20);
452
                for (axis = PITCH; axis <= YAW; axis++) {
453
                        deltaOffsets[axis] += rawGyroSum[axis];
454
                }
455
        }
456
 
457
        for (axis = PITCH; axis <= YAW; axis++) {
458
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
459
                // DebugOut.Analog[20 + axis] = gyroOffset[axis];
460
        }
461
 
462
        // Noise is relativ to offset. So, reset noise measurements when changing offsets.
463
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
464
 
465
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
466
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
467
        accOffset[Z] = GetParamWord(PID_ACC_Z);
468
 
469
        // Rough estimate. Hmm no nothing happens at calibration anyway.
470
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
471
        // pressureMeasurementCount = 0;
472
 
473
        delay_ms_Mess(100);
474
}
475
 
476
/*
477
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
478
 * Does not (!} update the local variables. This must be done with a
479
 * call to analog_calibrate() - this always (?) is done by the caller
480
 * anyway. There would be nothing wrong with updating the variables
481
 * directly from here, though.
482
 */
483
void analog_calibrateAcc(void) {
484
#define ACC_OFFSET_CYCLES 10
485
        /*
486
        uint8_t i, axis;
487
        int32_t deltaOffset[3] = { 0, 0, 0 };
488
        int16_t filteredDelta;
489
        // int16_t pressureDiff, savedRawAirPressure;
490
 
491
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
492
                delay_ms_Mess(10);
493
                for (axis = PITCH; axis <= YAW; axis++) {
494
                        deltaOffset[axis] += acc[axis];
495
                }
496
        }
497
 
498
        for (axis = PITCH; axis <= YAW; axis++) {
499
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
500
                                / ACC_OFFSET_CYCLES;
501
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
502
        }
503
 
504
        // Save ACC neutral settings to eeprom
505
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
506
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
507
        SetParamWord(PID_ACC_Z, accOffset[Z]);
508
 
509
        // Noise is relative to offset. So, reset noise measurements when
510
        // changing offsets.
511
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
512
 
513
        // Setting offset values has an influence in the analog.c ISR
514
        // Therefore run measurement for 100ms to achive stable readings
515
        delay_ms_Mess(100);
516
 
517
        */
518
        // Set the feedback so that air pressure ends up in the middle of the range.
519
        // (raw pressure high --> OCR0A also high...)
520
        /*
521
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
522
         delay_ms_Mess(1000);
523
 
524
         pressureDiff = 0;
525
         // DebugOut.Analog[16] = rawAirPressure;
526
 
527
         #define PRESSURE_CAL_CYCLE_COUNT 5
528
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
529
         savedRawAirPressure = rawAirPressure;
530
         OCR0A+=2;
531
         delay_ms_Mess(500);
532
         // raw pressure will decrease.
533
         pressureDiff += (savedRawAirPressure - rawAirPressure);
534
         savedRawAirPressure = rawAirPressure;
535
         OCR0A-=2;
536
         delay_ms_Mess(500);
537
         // raw pressure will increase.
538
         pressureDiff += (rawAirPressure - savedRawAirPressure);
539
         }
540
 
541
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
542
         DebugOut.Analog[27] = rangewidth;
543
         */
544
}