Subversion Repositories FlightCtrl

Rev

Rev 1965 | Rev 1969 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
1864 - 55
 
1612 dongfang 56
#include "analog.h"
1864 - 57
#include "attitude.h"
1612 dongfang 58
#include "sensors.h"
1964 - 59
#include "printf_P.h"
1612 dongfang 60
 
61
// for Delay functions
62
#include "timer0.h"
63
 
1955 - 64
// For debugOut
1612 dongfang 65
#include "uart0.h"
66
 
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
69
 
1955 - 70
// For debugOut.digital
1796 - 71
#include "output.h"
72
 
1952 - 73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
1854 - 76
/*
77
 * For each A/D conversion cycle, each analog channel is sampled a number of times
78
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 79
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 80
 * They are exported in the analog.h file - but please do not use them! The only
81
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
82
 * the offsets with the DAC.
83
 */
1952 - 84
volatile uint16_t sensorInputs[8];
1646 - 85
volatile int16_t rawGyroSum[3];
86
volatile int16_t acc[3];
1869 - 87
volatile int16_t filteredAcc[2] = { 0,0 };
1872 - 88
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
1612 dongfang 89
 
90
/*
1645 - 91
 * These 4 exported variables are zero-offset. The "PID" ones are used
92
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 93
 * integration to angles.
1612 dongfang 94
 */
1645 - 95
volatile int16_t gyro_PID[2];
96
volatile int16_t gyro_ATT[2];
97
volatile int16_t gyroD[2];
1646 - 98
volatile int16_t yawGyro;
1612 dongfang 99
 
100
/*
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
102
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 103
 * to be centered on zero.
1612 dongfang 104
 */
105
 
1965 - 106
volatile sensorOffset_t gyroOffset;
107
volatile sensorOffset_t accOffset;
1967 - 108
volatile sensorOffset_t gyroAmplifierOffset;
1960 - 109
 
1612 dongfang 110
/*
111
 * This allows some experimentation with the gyro filters.
112
 * Should be replaced by #define's later on...
113
 */
114
 
1645 - 115
/*
1775 - 116
 * Air pressure
1645 - 117
 */
1775 - 118
volatile uint8_t rangewidth = 106;
1612 dongfang 119
 
1775 - 120
// Direct from sensor, irrespective of range.
121
// volatile uint16_t rawAirPressure;
122
 
123
// Value of 2 samples, with range.
124
volatile uint16_t simpleAirPressure;
125
 
126
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
127
volatile int32_t filteredAirPressure;
128
 
129
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
130
volatile int32_t airPressureSum;
131
 
132
// The number of samples summed into airPressureSum so far.
133
volatile uint8_t pressureMeasurementCount;
134
 
1612 dongfang 135
/*
1854 - 136
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 137
 * That is divided by 3 below, for a final 10.34 per volt.
138
 * So the initial value of 100 is for 9.7 volts.
139
 */
140
volatile int16_t UBat = 100;
141
 
142
/*
143
 * Control and status.
144
 */
145
volatile uint16_t ADCycleCount = 0;
146
volatile uint8_t analogDataReady = 1;
147
 
148
/*
149
 * Experiment: Measuring vibration-induced sensor noise.
150
 */
1645 - 151
volatile uint16_t gyroNoisePeak[2];
152
volatile uint16_t accNoisePeak[2];
1612 dongfang 153
 
154
// ADC channels
1645 - 155
#define AD_GYRO_YAW       0
156
#define AD_GYRO_ROLL      1
1634 - 157
#define AD_GYRO_PITCH     2
158
#define AD_AIRPRESSURE    3
1645 - 159
#define AD_UBAT           4
160
#define AD_ACC_Z          5
161
#define AD_ACC_ROLL       6
162
#define AD_ACC_PITCH      7
1612 dongfang 163
 
164
/*
165
 * Table of AD converter inputs for each state.
1854 - 166
 * The number of samples summed for each channel is equal to
1612 dongfang 167
 * the number of times the channel appears in the array.
168
 * The max. number of samples that can be taken in 2 ms is:
1854 - 169
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
170
 * loop needs a little time between reading AD values and
1612 dongfang 171
 * re-enabling ADC, the real limit is (how much?) lower.
172
 * The acc. sensor is sampled even if not used - or installed
173
 * at all. The cost is not significant.
174
 */
175
 
1870 - 176
const uint8_t channelsForStates[] PROGMEM = {
177
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
178
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 179
 
1870 - 180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
181
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
182
 
183
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
184
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
185
  AD_AIRPRESSURE, // at 14, finish air pressure.
186
 
187
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
188
  AD_GYRO_ROLL,   // at 16, finish roll gyro
189
  AD_UBAT         // at 17, measure battery.
190
};
1612 dongfang 191
 
192
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
193
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
194
 
195
void analog_init(void) {
1821 - 196
        uint8_t sreg = SREG;
197
        // disable all interrupts before reconfiguration
198
        cli();
1612 dongfang 199
 
1821 - 200
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
201
        DDRA = 0x00;
202
        PORTA = 0x00;
203
        // Digital Input Disable Register 0
204
        // Disable digital input buffer for analog adc_channel pins
205
        DIDR0 = 0xFF;
206
        // external reference, adjust data to the right
1952 - 207
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 208
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1952 - 209
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
1821 - 210
        //Set ADC Control and Status Register A
211
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 212
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 213
        //Set ADC Control and Status Register B
214
        //Trigger Source to Free Running Mode
1952 - 215
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
216
 
217
        startAnalogConversionCycle();
218
 
1821 - 219
        // restore global interrupt flags
220
        SREG = sreg;
1612 dongfang 221
}
222
 
1821 - 223
void measureNoise(const int16_t sensor,
224
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
225
        if (sensor > (int16_t) (*noiseMeasurement)) {
226
                *noiseMeasurement = sensor;
227
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
228
                *noiseMeasurement = -sensor;
229
        } else if (*noiseMeasurement > damping) {
230
                *noiseMeasurement -= damping;
231
        } else {
232
                *noiseMeasurement = 0;
233
        }
1612 dongfang 234
}
235
 
1796 - 236
/*
237
 * Min.: 0
238
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
239
 */
1775 - 240
uint16_t getSimplePressure(int advalue) {
1821 - 241
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 242
}
243
 
1952 - 244
void startAnalogConversionCycle(void) {
1960 - 245
  analogDataReady = 0;
1952 - 246
  // Stop the sampling. Cycle is over.
247
  for (uint8_t i = 0; i < 8; i++) {
248
    sensorInputs[i] = 0;
249
  }
250
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
251
  startADC();
252
}
253
 
1645 - 254
/*****************************************************
1854 - 255
 * Interrupt Service Routine for ADC
1963 - 256
 * Runs at 312.5 kHz or 3.2 �s. When all states are
1952 - 257
 * processed further conversions are stopped.
1645 - 258
 *****************************************************/
1870 - 259
ISR(ADC_vect) {
1952 - 260
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
261
  sensorInputs[ad_channel] += ADC;
262
  // set up for next state.
263
  state++;
264
  if (state < 18) {
265
    ad_channel = pgm_read_byte(&channelsForStates[state]);
266
    // set adc muxer to next ad_channel
267
    ADMUX = (ADMUX & 0xE0) | ad_channel;
268
    // after full cycle stop further interrupts
269
    startADC();
270
  } else {
271
    state = 0;
272
    ADCycleCount++;
273
    analogDataReady = 1;
274
    // do not restart ADC converter. 
275
  }
276
}
1612 dongfang 277
 
1952 - 278
void analog_updateGyros(void) {
279
  // for various filters...
280
  int16_t tempOffsetGyro, tempGyro;
281
 
282
  for (uint8_t axis=0; axis<2; axis++) {
283
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
1967 - 284
 
1952 - 285
    /*
286
     * Process the gyro data for the PID controller.
287
     */
288
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
289
    //    gyro with a wider range, and helps counter saturation at full control.
290
 
1960 - 291
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 292
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
1955 - 293
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 294
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
295
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1955 - 296
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 297
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
298
          + SENSOR_MAX_PITCHROLL;
299
      } else {
1955 - 300
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 301
      }
302
    }
303
 
304
    // 2) Apply sign and offset, scale before filtering.
305
    if (GYRO_REVERSED[axis]) {
1960 - 306
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 307
    } else {
1960 - 308
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 309
    }
310
 
311
    // 3) Scale and filter.
1960 - 312
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
1952 - 313
 
314
    // 4) Measure noise.
315
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
316
 
317
    // 5) Differential measurement.
1960 - 318
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
1952 - 319
 
320
    // 6) Done.
321
    gyro_PID[axis] = tempOffsetGyro;
322
 
323
    /*
324
     * Now process the data for attitude angles.
325
     */
326
    tempGyro = rawGyroSum[axis];
327
 
328
    // 1) Apply sign and offset, scale before filtering.
329
    if (GYRO_REVERSED[axis]) {
1960 - 330
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 331
    } else {
1960 - 332
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 333
    }
334
 
335
    // 2) Filter.
1960 - 336
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
1952 - 337
  }
338
 
339
  // Yaw gyro.
340
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
341
  if (GYRO_REVERSED[YAW])
1960 - 342
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 343
  else
1960 - 344
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1955 - 345
 
1967 - 346
  debugOut.analog[3] = rawGyroSum[0];
347
  debugOut.analog[4] = rawGyroSum[1];
348
  debugOut.analog[5] = rawGyroSum[2];
1952 - 349
}
1775 - 350
 
1952 - 351
void analog_updateAccelerometers(void) {
352
  // Pitch and roll axis accelerations.
353
  for (uint8_t axis=0; axis<2; axis++) {
354
    if (ACC_REVERSED[axis])
1960 - 355
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
1952 - 356
    else
1960 - 357
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
1952 - 358
 
1960 - 359
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 360
 
361
    /*
362
      stronglyFilteredAcc[PITCH] =
363
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
364
    */
365
 
366
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
367
  }
368
 
369
  // Z acc.
370
  if (ACC_REVERSED[Z])
1960 - 371
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
1952 - 372
  else
1960 - 373
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
1646 - 374
 
1952 - 375
  /*
376
    stronglyFilteredAcc[Z] =
377
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
378
  */
379
}
1645 - 380
 
1952 - 381
void analog_updateAirPressure(void) {
382
  static uint16_t pressureAutorangingWait = 25;
383
  uint16_t rawAirPressure;
384
  int16_t newrange;
385
  // air pressure
386
  if (pressureAutorangingWait) {
387
    //A range switch was done recently. Wait for steadying.
388
    pressureAutorangingWait--;
1955 - 389
    debugOut.analog[27] = (uint16_t) OCR0A;
390
    debugOut.analog[31] = simpleAirPressure;
1952 - 391
  } else {
392
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
393
    if (rawAirPressure < MIN_RAWPRESSURE) {
394
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
395
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
396
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
397
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
398
        OCR0A = newrange;
399
      } else {
400
        if (OCR0A) {
401
          OCR0A--;
402
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 403
        }
1952 - 404
      }
405
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
406
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
407
      // If near the end, make a limited increase
408
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
409
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
410
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
411
        OCR0A = newrange;
412
      } else {
413
        if (OCR0A < 254) {
414
          OCR0A++;
415
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
416
        }
417
      }
418
    }
419
 
420
    // Even if the sample is off-range, use it.
421
    simpleAirPressure = getSimplePressure(rawAirPressure);
1955 - 422
    debugOut.analog[27] = (uint16_t) OCR0A;
423
    debugOut.analog[31] = simpleAirPressure;
1952 - 424
 
425
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
426
      // Danger: pressure near lower end of range. If the measurement saturates, the
427
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 428
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 429
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
430
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
431
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
432
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
433
      // Danger: pressure near upper end of range. If the measurement saturates, the
434
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 435
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 436
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
437
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
438
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
439
    } else {
440
      // normal case.
441
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
442
      // The 2 cases above (end of range) are ignored for this.
1955 - 443
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
1952 - 444
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
445
        airPressureSum += simpleAirPressure / 2;
446
      else
447
        airPressureSum += simpleAirPressure;
448
    }
449
 
450
    // 2 samples were added.
451
    pressureMeasurementCount += 2;
452
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
453
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
454
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
455
      pressureMeasurementCount = airPressureSum = 0;
456
    }
457
  }
458
}
1821 - 459
 
1952 - 460
void analog_updateBatteryVoltage(void) {
461
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
462
  // This is divided by 3 --> 10.34 counts per volt.
463
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 464
  debugOut.analog[11] = UBat;
1952 - 465
}
1821 - 466
 
1952 - 467
void analog_update(void) {
468
  analog_updateGyros();
469
  analog_updateAccelerometers();
470
  analog_updateAirPressure();
471
  analog_updateBatteryVoltage();
1612 dongfang 472
}
473
 
1961 - 474
void analog_setNeutral() {
1967 - 475
  if (gyroAmplifierOffset_readFromEEProm()) {
476
    printf("gyro amp invalid, you must recalibrate.");
477
    gyro_loadOffsets(1);
478
  }
479
 
1961 - 480
  if (gyroOffset_readFromEEProm()) {
1964 - 481
    printf("gyro offsets invalid, you must recalibrate.");
1961 - 482
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
483
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
484
  }
1964 - 485
 
486
  debugOut.analog[6] = gyroOffset.offsets[PITCH];
487
  debugOut.analog[7] = gyroOffset.offsets[ROLL];
1961 - 488
 
489
  if (accOffset_readFromEEProm()) {
1964 - 490
    printf("acc. meter offsets invalid, you must recalibrate.");
1961 - 491
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
492
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
493
  }
494
 
495
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
496
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
497
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
498
 
499
  // Setting offset values has an influence in the analog.c ISR
500
  // Therefore run measurement for 100ms to achive stable readings
1967 - 501
  delay_ms_with_adc_measurement(100);
1961 - 502
 
503
  // Rough estimate. Hmm no nothing happens at calibration anyway.
504
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
505
  // pressureMeasurementCount = 0;
506
}
507
 
508
void analog_calibrateGyros(void) {
1612 dongfang 509
#define GYRO_OFFSET_CYCLES 32
1952 - 510
  uint8_t i, axis;
1963 - 511
  int32_t offsets[3] = { 0, 0, 0 };
1952 - 512
  gyro_calibrate();
513
 
514
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
515
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
1967 - 516
    delay_ms_with_adc_measurement(20);
1952 - 517
    for (axis = PITCH; axis <= YAW; axis++) {
1963 - 518
      offsets[axis] += rawGyroSum[axis];
1952 - 519
    }
520
  }
521
 
522
  for (axis = PITCH; axis <= YAW; axis++) {
1963 - 523
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
1952 - 524
  }
1961 - 525
 
526
  gyroOffset_writeToEEProm();  
1612 dongfang 527
}
528
 
529
/*
530
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
531
 * Does not (!} update the local variables. This must be done with a
532
 * call to analog_calibrate() - this always (?) is done by the caller
533
 * anyway. There would be nothing wrong with updating the variables
534
 * directly from here, though.
535
 */
536
void analog_calibrateAcc(void) {
537
#define ACC_OFFSET_CYCLES 10
1960 - 538
  uint8_t i, axis;
539
  int32_t deltaOffset[3] = { 0, 0, 0 };
540
  int16_t filteredDelta;
541
 
542
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
1967 - 543
    delay_ms_with_adc_measurement(10);
1960 - 544
    for (axis = PITCH; axis <= YAW; axis++) {
545
      deltaOffset[axis] += acc[axis];
546
    }
547
  }
548
 
549
  for (axis = PITCH; axis <= YAW; axis++) {
550
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
551
      / ACC_OFFSET_CYCLES;
552
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
553
  }
1961 - 554
 
1960 - 555
  accOffset_writeToEEProm();  
1612 dongfang 556
}