Subversion Repositories FlightCtrl

Rev

Rev 1963 | Rev 1965 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
1864 - 55
 
1612 dongfang 56
#include "analog.h"
1864 - 57
#include "attitude.h"
1612 dongfang 58
#include "sensors.h"
1964 - 59
#include "printf_P.h"
1612 dongfang 60
 
61
// for Delay functions
62
#include "timer0.h"
63
 
1955 - 64
// For debugOut
1612 dongfang 65
#include "uart0.h"
66
 
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
69
 
1955 - 70
// For debugOut.digital
1796 - 71
#include "output.h"
72
 
1952 - 73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
1854 - 76
/*
77
 * For each A/D conversion cycle, each analog channel is sampled a number of times
78
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 79
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 80
 * They are exported in the analog.h file - but please do not use them! The only
81
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
82
 * the offsets with the DAC.
83
 */
1952 - 84
volatile uint16_t sensorInputs[8];
1646 - 85
volatile int16_t rawGyroSum[3];
86
volatile int16_t acc[3];
1869 - 87
volatile int16_t filteredAcc[2] = { 0,0 };
1872 - 88
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
1612 dongfang 89
 
90
/*
1645 - 91
 * These 4 exported variables are zero-offset. The "PID" ones are used
92
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 93
 * integration to angles.
1612 dongfang 94
 */
1645 - 95
volatile int16_t gyro_PID[2];
96
volatile int16_t gyro_ATT[2];
97
volatile int16_t gyroD[2];
1646 - 98
volatile int16_t yawGyro;
1612 dongfang 99
 
100
/*
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
102
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 103
 * to be centered on zero.
1612 dongfang 104
 */
105
 
1960 - 106
sensorOffset_t gyroOffset;
107
sensorOffset_t accOffset;
108
 
1612 dongfang 109
/*
110
 * This allows some experimentation with the gyro filters.
111
 * Should be replaced by #define's later on...
112
 */
113
 
1645 - 114
/*
1775 - 115
 * Air pressure
1645 - 116
 */
1775 - 117
volatile uint8_t rangewidth = 106;
1612 dongfang 118
 
1775 - 119
// Direct from sensor, irrespective of range.
120
// volatile uint16_t rawAirPressure;
121
 
122
// Value of 2 samples, with range.
123
volatile uint16_t simpleAirPressure;
124
 
125
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
126
volatile int32_t filteredAirPressure;
127
 
128
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
129
volatile int32_t airPressureSum;
130
 
131
// The number of samples summed into airPressureSum so far.
132
volatile uint8_t pressureMeasurementCount;
133
 
1612 dongfang 134
/*
1854 - 135
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 136
 * That is divided by 3 below, for a final 10.34 per volt.
137
 * So the initial value of 100 is for 9.7 volts.
138
 */
139
volatile int16_t UBat = 100;
140
 
141
/*
142
 * Control and status.
143
 */
144
volatile uint16_t ADCycleCount = 0;
145
volatile uint8_t analogDataReady = 1;
146
 
147
/*
148
 * Experiment: Measuring vibration-induced sensor noise.
149
 */
1645 - 150
volatile uint16_t gyroNoisePeak[2];
151
volatile uint16_t accNoisePeak[2];
1612 dongfang 152
 
153
// ADC channels
1645 - 154
#define AD_GYRO_YAW       0
155
#define AD_GYRO_ROLL      1
1634 - 156
#define AD_GYRO_PITCH     2
157
#define AD_AIRPRESSURE    3
1645 - 158
#define AD_UBAT           4
159
#define AD_ACC_Z          5
160
#define AD_ACC_ROLL       6
161
#define AD_ACC_PITCH      7
1612 dongfang 162
 
163
/*
164
 * Table of AD converter inputs for each state.
1854 - 165
 * The number of samples summed for each channel is equal to
1612 dongfang 166
 * the number of times the channel appears in the array.
167
 * The max. number of samples that can be taken in 2 ms is:
1854 - 168
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
169
 * loop needs a little time between reading AD values and
1612 dongfang 170
 * re-enabling ADC, the real limit is (how much?) lower.
171
 * The acc. sensor is sampled even if not used - or installed
172
 * at all. The cost is not significant.
173
 */
174
 
1870 - 175
const uint8_t channelsForStates[] PROGMEM = {
176
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
177
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 178
 
1870 - 179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
180
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
181
 
182
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
183
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
184
  AD_AIRPRESSURE, // at 14, finish air pressure.
185
 
186
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
187
  AD_GYRO_ROLL,   // at 16, finish roll gyro
188
  AD_UBAT         // at 17, measure battery.
189
};
1612 dongfang 190
 
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
193
 
194
void analog_init(void) {
1821 - 195
        uint8_t sreg = SREG;
196
        // disable all interrupts before reconfiguration
197
        cli();
1612 dongfang 198
 
1821 - 199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
200
        DDRA = 0x00;
201
        PORTA = 0x00;
202
        // Digital Input Disable Register 0
203
        // Disable digital input buffer for analog adc_channel pins
204
        DIDR0 = 0xFF;
205
        // external reference, adjust data to the right
1952 - 206
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1952 - 208
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
1821 - 209
        //Set ADC Control and Status Register A
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 211
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 212
        //Set ADC Control and Status Register B
213
        //Trigger Source to Free Running Mode
1952 - 214
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
215
 
216
        startAnalogConversionCycle();
217
 
1821 - 218
        // restore global interrupt flags
219
        SREG = sreg;
1612 dongfang 220
}
221
 
1821 - 222
void measureNoise(const int16_t sensor,
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
225
                *noiseMeasurement = sensor;
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
227
                *noiseMeasurement = -sensor;
228
        } else if (*noiseMeasurement > damping) {
229
                *noiseMeasurement -= damping;
230
        } else {
231
                *noiseMeasurement = 0;
232
        }
1612 dongfang 233
}
234
 
1796 - 235
/*
236
 * Min.: 0
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
238
 */
1775 - 239
uint16_t getSimplePressure(int advalue) {
1821 - 240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 241
}
242
 
1952 - 243
void startAnalogConversionCycle(void) {
1960 - 244
  analogDataReady = 0;
1952 - 245
  // Stop the sampling. Cycle is over.
246
  for (uint8_t i = 0; i < 8; i++) {
247
    sensorInputs[i] = 0;
248
  }
249
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
250
  startADC();
251
}
252
 
1645 - 253
/*****************************************************
1854 - 254
 * Interrupt Service Routine for ADC
1963 - 255
 * Runs at 312.5 kHz or 3.2 �s. When all states are
1952 - 256
 * processed further conversions are stopped.
1645 - 257
 *****************************************************/
1870 - 258
ISR(ADC_vect) {
1952 - 259
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
260
  sensorInputs[ad_channel] += ADC;
261
  // set up for next state.
262
  state++;
263
  if (state < 18) {
264
    ad_channel = pgm_read_byte(&channelsForStates[state]);
265
    // set adc muxer to next ad_channel
266
    ADMUX = (ADMUX & 0xE0) | ad_channel;
267
    // after full cycle stop further interrupts
268
    startADC();
269
  } else {
270
    state = 0;
271
    ADCycleCount++;
272
    analogDataReady = 1;
273
    // do not restart ADC converter. 
274
  }
275
}
1612 dongfang 276
 
1952 - 277
void analog_updateGyros(void) {
278
  // for various filters...
279
  int16_t tempOffsetGyro, tempGyro;
280
 
281
  for (uint8_t axis=0; axis<2; axis++) {
282
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
283
    /*
284
     * Process the gyro data for the PID controller.
285
     */
286
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
287
    //    gyro with a wider range, and helps counter saturation at full control.
288
 
1960 - 289
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 290
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
1955 - 291
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 292
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
293
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1955 - 294
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 295
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
296
          + SENSOR_MAX_PITCHROLL;
297
      } else {
1955 - 298
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 299
      }
300
    }
301
 
302
    // 2) Apply sign and offset, scale before filtering.
303
    if (GYRO_REVERSED[axis]) {
1960 - 304
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 305
    } else {
1960 - 306
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 307
    }
308
 
309
    // 3) Scale and filter.
1960 - 310
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
1952 - 311
 
312
    // 4) Measure noise.
313
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
314
 
315
    // 5) Differential measurement.
1960 - 316
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
1952 - 317
 
318
    // 6) Done.
319
    gyro_PID[axis] = tempOffsetGyro;
320
 
321
    /*
322
     * Now process the data for attitude angles.
323
     */
324
    tempGyro = rawGyroSum[axis];
325
 
326
    // 1) Apply sign and offset, scale before filtering.
327
    if (GYRO_REVERSED[axis]) {
1960 - 328
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 329
    } else {
1960 - 330
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 331
    }
332
 
333
    // 2) Filter.
1960 - 334
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
1952 - 335
  }
336
 
337
  // Yaw gyro.
338
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
339
  if (GYRO_REVERSED[YAW])
1960 - 340
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 341
  else
1960 - 342
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1955 - 343
 
344
  debugOut.analog[3] = gyro_ATT[PITCH];
345
  debugOut.analog[4] = gyro_ATT[ROLL];
346
  debugOut.analog[5] = yawGyro;
1952 - 347
}
1775 - 348
 
1952 - 349
void analog_updateAccelerometers(void) {
350
  // Pitch and roll axis accelerations.
351
  for (uint8_t axis=0; axis<2; axis++) {
352
    if (ACC_REVERSED[axis])
1960 - 353
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
1952 - 354
    else
1960 - 355
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
1952 - 356
 
1960 - 357
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 358
 
359
    /*
360
      stronglyFilteredAcc[PITCH] =
361
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
362
    */
363
 
364
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
365
  }
366
 
367
  // Z acc.
368
  if (ACC_REVERSED[Z])
1960 - 369
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
1952 - 370
  else
1960 - 371
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
1646 - 372
 
1952 - 373
  /*
374
    stronglyFilteredAcc[Z] =
375
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
376
  */
377
}
1645 - 378
 
1952 - 379
void analog_updateAirPressure(void) {
380
  static uint16_t pressureAutorangingWait = 25;
381
  uint16_t rawAirPressure;
382
  int16_t newrange;
383
  // air pressure
384
  if (pressureAutorangingWait) {
385
    //A range switch was done recently. Wait for steadying.
386
    pressureAutorangingWait--;
1955 - 387
    debugOut.analog[27] = (uint16_t) OCR0A;
388
    debugOut.analog[31] = simpleAirPressure;
1952 - 389
  } else {
390
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
391
    if (rawAirPressure < MIN_RAWPRESSURE) {
392
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
393
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
394
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
395
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
396
        OCR0A = newrange;
397
      } else {
398
        if (OCR0A) {
399
          OCR0A--;
400
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 401
        }
1952 - 402
      }
403
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
404
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
405
      // If near the end, make a limited increase
406
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
407
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
408
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
409
        OCR0A = newrange;
410
      } else {
411
        if (OCR0A < 254) {
412
          OCR0A++;
413
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
414
        }
415
      }
416
    }
417
 
418
    // Even if the sample is off-range, use it.
419
    simpleAirPressure = getSimplePressure(rawAirPressure);
1955 - 420
    debugOut.analog[27] = (uint16_t) OCR0A;
421
    debugOut.analog[31] = simpleAirPressure;
1952 - 422
 
423
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
424
      // Danger: pressure near lower end of range. If the measurement saturates, the
425
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 426
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 427
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
428
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
429
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
430
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
431
      // Danger: pressure near upper end of range. If the measurement saturates, the
432
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 433
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 434
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
435
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
436
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
437
    } else {
438
      // normal case.
439
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
440
      // The 2 cases above (end of range) are ignored for this.
1955 - 441
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
1952 - 442
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
443
        airPressureSum += simpleAirPressure / 2;
444
      else
445
        airPressureSum += simpleAirPressure;
446
    }
447
 
448
    // 2 samples were added.
449
    pressureMeasurementCount += 2;
450
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
451
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
452
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
453
      pressureMeasurementCount = airPressureSum = 0;
454
    }
455
  }
456
}
1821 - 457
 
1952 - 458
void analog_updateBatteryVoltage(void) {
459
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
460
  // This is divided by 3 --> 10.34 counts per volt.
461
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 462
  debugOut.analog[11] = UBat;
1952 - 463
}
1821 - 464
 
1952 - 465
void analog_update(void) {
466
  analog_updateGyros();
467
  analog_updateAccelerometers();
468
  analog_updateAirPressure();
469
  analog_updateBatteryVoltage();
1612 dongfang 470
}
471
 
1961 - 472
void analog_setNeutral() {
473
  if (gyroOffset_readFromEEProm()) {
1964 - 474
    printf("gyro offsets invalid, you must recalibrate.");
1961 - 475
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
476
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
477
  }
1964 - 478
 
479
  debugOut.analog[6] = gyroOffset.offsets[PITCH];
480
  debugOut.analog[7] = gyroOffset.offsets[ROLL];
1961 - 481
 
482
  if (accOffset_readFromEEProm()) {
1964 - 483
    printf("acc. meter offsets invalid, you must recalibrate.");
1961 - 484
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
485
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
486
  }
487
 
488
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
489
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
490
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
491
 
492
  // Setting offset values has an influence in the analog.c ISR
493
  // Therefore run measurement for 100ms to achive stable readings
494
  delay_ms_Mess(100);
495
 
496
  // Rough estimate. Hmm no nothing happens at calibration anyway.
497
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
498
  // pressureMeasurementCount = 0;
499
}
500
 
501
void analog_calibrateGyros(void) {
1612 dongfang 502
#define GYRO_OFFSET_CYCLES 32
1952 - 503
  uint8_t i, axis;
1963 - 504
  int32_t offsets[3] = { 0, 0, 0 };
1952 - 505
  gyro_calibrate();
506
 
507
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
508
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
509
    delay_ms_Mess(20);
510
    for (axis = PITCH; axis <= YAW; axis++) {
1963 - 511
      offsets[axis] += rawGyroSum[axis];
1952 - 512
    }
513
  }
514
 
515
  for (axis = PITCH; axis <= YAW; axis++) {
1963 - 516
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
1952 - 517
  }
1961 - 518
 
519
  gyroOffset_writeToEEProm();  
1612 dongfang 520
}
521
 
522
/*
523
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
524
 * Does not (!} update the local variables. This must be done with a
525
 * call to analog_calibrate() - this always (?) is done by the caller
526
 * anyway. There would be nothing wrong with updating the variables
527
 * directly from here, though.
528
 */
529
void analog_calibrateAcc(void) {
530
#define ACC_OFFSET_CYCLES 10
1960 - 531
  uint8_t i, axis;
532
  int32_t deltaOffset[3] = { 0, 0, 0 };
533
  int16_t filteredDelta;
534
 
535
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
536
    delay_ms_Mess(10);
537
    for (axis = PITCH; axis <= YAW; axis++) {
538
      deltaOffset[axis] += acc[axis];
539
    }
540
  }
541
 
542
  for (axis = PITCH; axis <= YAW; axis++) {
543
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
544
      / ACC_OFFSET_CYCLES;
545
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
546
  }
1961 - 547
 
1960 - 548
  accOffset_writeToEEProm();  
1612 dongfang 549
}