Subversion Repositories FlightCtrl

Rev

Rev 1961 | Rev 1964 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
1963 - 7
// + dass eine Nutzung (auch auszugsweise) nur f�r den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
1864 - 55
 
1612 dongfang 56
#include "analog.h"
1864 - 57
#include "attitude.h"
1612 dongfang 58
#include "sensors.h"
59
 
60
// for Delay functions
61
#include "timer0.h"
62
 
1955 - 63
// For debugOut
1612 dongfang 64
#include "uart0.h"
65
 
66
// For reading and writing acc. meter offsets.
67
#include "eeprom.h"
68
 
1955 - 69
// For debugOut.digital
1796 - 70
#include "output.h"
71
 
1952 - 72
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
73
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
74
 
1854 - 75
/*
76
 * For each A/D conversion cycle, each analog channel is sampled a number of times
77
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 78
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 79
 * They are exported in the analog.h file - but please do not use them! The only
80
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
81
 * the offsets with the DAC.
82
 */
1952 - 83
volatile uint16_t sensorInputs[8];
1646 - 84
volatile int16_t rawGyroSum[3];
85
volatile int16_t acc[3];
1869 - 86
volatile int16_t filteredAcc[2] = { 0,0 };
1872 - 87
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
1612 dongfang 88
 
89
/*
1645 - 90
 * These 4 exported variables are zero-offset. The "PID" ones are used
91
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 92
 * integration to angles.
1612 dongfang 93
 */
1645 - 94
volatile int16_t gyro_PID[2];
95
volatile int16_t gyro_ATT[2];
96
volatile int16_t gyroD[2];
1646 - 97
volatile int16_t yawGyro;
1612 dongfang 98
 
99
/*
100
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
101
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 102
 * to be centered on zero.
1612 dongfang 103
 */
104
 
1960 - 105
sensorOffset_t gyroOffset;
106
sensorOffset_t accOffset;
107
 
1612 dongfang 108
/*
109
 * This allows some experimentation with the gyro filters.
110
 * Should be replaced by #define's later on...
111
 */
112
 
1645 - 113
/*
1775 - 114
 * Air pressure
1645 - 115
 */
1775 - 116
volatile uint8_t rangewidth = 106;
1612 dongfang 117
 
1775 - 118
// Direct from sensor, irrespective of range.
119
// volatile uint16_t rawAirPressure;
120
 
121
// Value of 2 samples, with range.
122
volatile uint16_t simpleAirPressure;
123
 
124
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
125
volatile int32_t filteredAirPressure;
126
 
127
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
128
volatile int32_t airPressureSum;
129
 
130
// The number of samples summed into airPressureSum so far.
131
volatile uint8_t pressureMeasurementCount;
132
 
1612 dongfang 133
/*
1854 - 134
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 135
 * That is divided by 3 below, for a final 10.34 per volt.
136
 * So the initial value of 100 is for 9.7 volts.
137
 */
138
volatile int16_t UBat = 100;
139
 
140
/*
141
 * Control and status.
142
 */
143
volatile uint16_t ADCycleCount = 0;
144
volatile uint8_t analogDataReady = 1;
145
 
146
/*
147
 * Experiment: Measuring vibration-induced sensor noise.
148
 */
1645 - 149
volatile uint16_t gyroNoisePeak[2];
150
volatile uint16_t accNoisePeak[2];
1612 dongfang 151
 
152
// ADC channels
1645 - 153
#define AD_GYRO_YAW       0
154
#define AD_GYRO_ROLL      1
1634 - 155
#define AD_GYRO_PITCH     2
156
#define AD_AIRPRESSURE    3
1645 - 157
#define AD_UBAT           4
158
#define AD_ACC_Z          5
159
#define AD_ACC_ROLL       6
160
#define AD_ACC_PITCH      7
1612 dongfang 161
 
162
/*
163
 * Table of AD converter inputs for each state.
1854 - 164
 * The number of samples summed for each channel is equal to
1612 dongfang 165
 * the number of times the channel appears in the array.
166
 * The max. number of samples that can be taken in 2 ms is:
1854 - 167
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
168
 * loop needs a little time between reading AD values and
1612 dongfang 169
 * re-enabling ADC, the real limit is (how much?) lower.
170
 * The acc. sensor is sampled even if not used - or installed
171
 * at all. The cost is not significant.
172
 */
173
 
1870 - 174
const uint8_t channelsForStates[] PROGMEM = {
175
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
176
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 177
 
1870 - 178
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
179
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
180
 
181
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
182
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
183
  AD_AIRPRESSURE, // at 14, finish air pressure.
184
 
185
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
186
  AD_GYRO_ROLL,   // at 16, finish roll gyro
187
  AD_UBAT         // at 17, measure battery.
188
};
1612 dongfang 189
 
190
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
191
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
192
 
193
void analog_init(void) {
1821 - 194
        uint8_t sreg = SREG;
195
        // disable all interrupts before reconfiguration
196
        cli();
1612 dongfang 197
 
1821 - 198
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
199
        DDRA = 0x00;
200
        PORTA = 0x00;
201
        // Digital Input Disable Register 0
202
        // Disable digital input buffer for analog adc_channel pins
203
        DIDR0 = 0xFF;
204
        // external reference, adjust data to the right
1952 - 205
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 206
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1952 - 207
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
1821 - 208
        //Set ADC Control and Status Register A
209
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 210
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 211
        //Set ADC Control and Status Register B
212
        //Trigger Source to Free Running Mode
1952 - 213
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
214
 
215
        startAnalogConversionCycle();
216
 
1821 - 217
        // restore global interrupt flags
218
        SREG = sreg;
1612 dongfang 219
}
220
 
1821 - 221
void measureNoise(const int16_t sensor,
222
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
223
        if (sensor > (int16_t) (*noiseMeasurement)) {
224
                *noiseMeasurement = sensor;
225
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
226
                *noiseMeasurement = -sensor;
227
        } else if (*noiseMeasurement > damping) {
228
                *noiseMeasurement -= damping;
229
        } else {
230
                *noiseMeasurement = 0;
231
        }
1612 dongfang 232
}
233
 
1796 - 234
/*
235
 * Min.: 0
236
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
237
 */
1775 - 238
uint16_t getSimplePressure(int advalue) {
1821 - 239
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 240
}
241
 
1952 - 242
void startAnalogConversionCycle(void) {
1960 - 243
  analogDataReady = 0;
1952 - 244
  // Stop the sampling. Cycle is over.
245
  for (uint8_t i = 0; i < 8; i++) {
246
    sensorInputs[i] = 0;
247
  }
248
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
249
  startADC();
250
}
251
 
1645 - 252
/*****************************************************
1854 - 253
 * Interrupt Service Routine for ADC
1963 - 254
 * Runs at 312.5 kHz or 3.2 �s. When all states are
1952 - 255
 * processed further conversions are stopped.
1645 - 256
 *****************************************************/
1870 - 257
ISR(ADC_vect) {
1952 - 258
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
259
  sensorInputs[ad_channel] += ADC;
260
  // set up for next state.
261
  state++;
262
  if (state < 18) {
263
    ad_channel = pgm_read_byte(&channelsForStates[state]);
264
    // set adc muxer to next ad_channel
265
    ADMUX = (ADMUX & 0xE0) | ad_channel;
266
    // after full cycle stop further interrupts
267
    startADC();
268
  } else {
269
    state = 0;
270
    ADCycleCount++;
271
    analogDataReady = 1;
272
    // do not restart ADC converter. 
273
  }
274
}
1612 dongfang 275
 
1952 - 276
void analog_updateGyros(void) {
277
  // for various filters...
278
  int16_t tempOffsetGyro, tempGyro;
279
 
280
  for (uint8_t axis=0; axis<2; axis++) {
281
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
282
    /*
283
     * Process the gyro data for the PID controller.
284
     */
285
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
286
    //    gyro with a wider range, and helps counter saturation at full control.
287
 
1960 - 288
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 289
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
1955 - 290
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 291
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
292
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1955 - 293
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 294
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
295
          + SENSOR_MAX_PITCHROLL;
296
      } else {
1955 - 297
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 298
      }
299
    }
300
 
301
    // 2) Apply sign and offset, scale before filtering.
302
    if (GYRO_REVERSED[axis]) {
1960 - 303
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 304
    } else {
1960 - 305
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 306
    }
307
 
308
    // 3) Scale and filter.
1960 - 309
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
1952 - 310
 
311
    // 4) Measure noise.
312
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
313
 
314
    // 5) Differential measurement.
1960 - 315
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
1952 - 316
 
317
    // 6) Done.
318
    gyro_PID[axis] = tempOffsetGyro;
319
 
320
    /*
321
     * Now process the data for attitude angles.
322
     */
323
    tempGyro = rawGyroSum[axis];
324
 
325
    // 1) Apply sign and offset, scale before filtering.
326
    if (GYRO_REVERSED[axis]) {
1960 - 327
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 328
    } else {
1960 - 329
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 330
    }
331
 
332
    // 2) Filter.
1960 - 333
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
1952 - 334
  }
335
 
336
  // Yaw gyro.
337
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
338
  if (GYRO_REVERSED[YAW])
1960 - 339
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 340
  else
1960 - 341
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1955 - 342
 
343
  debugOut.analog[3] = gyro_ATT[PITCH];
344
  debugOut.analog[4] = gyro_ATT[ROLL];
345
  debugOut.analog[5] = yawGyro;
1952 - 346
}
1775 - 347
 
1952 - 348
void analog_updateAccelerometers(void) {
349
  // Pitch and roll axis accelerations.
350
  for (uint8_t axis=0; axis<2; axis++) {
351
    if (ACC_REVERSED[axis])
1960 - 352
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
1952 - 353
    else
1960 - 354
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
1952 - 355
 
1960 - 356
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 357
 
358
    /*
359
      stronglyFilteredAcc[PITCH] =
360
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
361
    */
362
 
363
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
364
  }
365
 
366
  // Z acc.
367
  if (ACC_REVERSED[Z])
1960 - 368
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
1952 - 369
  else
1960 - 370
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
1646 - 371
 
1952 - 372
  /*
373
    stronglyFilteredAcc[Z] =
374
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
375
  */
376
}
1645 - 377
 
1952 - 378
void analog_updateAirPressure(void) {
379
  static uint16_t pressureAutorangingWait = 25;
380
  uint16_t rawAirPressure;
381
  int16_t newrange;
382
  // air pressure
383
  if (pressureAutorangingWait) {
384
    //A range switch was done recently. Wait for steadying.
385
    pressureAutorangingWait--;
1955 - 386
    debugOut.analog[27] = (uint16_t) OCR0A;
387
    debugOut.analog[31] = simpleAirPressure;
1952 - 388
  } else {
389
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
390
    if (rawAirPressure < MIN_RAWPRESSURE) {
391
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
392
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
393
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
394
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
395
        OCR0A = newrange;
396
      } else {
397
        if (OCR0A) {
398
          OCR0A--;
399
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 400
        }
1952 - 401
      }
402
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
403
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
404
      // If near the end, make a limited increase
405
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
406
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
407
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
408
        OCR0A = newrange;
409
      } else {
410
        if (OCR0A < 254) {
411
          OCR0A++;
412
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
413
        }
414
      }
415
    }
416
 
417
    // Even if the sample is off-range, use it.
418
    simpleAirPressure = getSimplePressure(rawAirPressure);
1955 - 419
    debugOut.analog[27] = (uint16_t) OCR0A;
420
    debugOut.analog[31] = simpleAirPressure;
1952 - 421
 
422
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
423
      // Danger: pressure near lower end of range. If the measurement saturates, the
424
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 425
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 426
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
427
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
428
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
429
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
430
      // Danger: pressure near upper end of range. If the measurement saturates, the
431
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 432
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 433
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
434
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
435
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
436
    } else {
437
      // normal case.
438
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
439
      // The 2 cases above (end of range) are ignored for this.
1955 - 440
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
1952 - 441
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
442
        airPressureSum += simpleAirPressure / 2;
443
      else
444
        airPressureSum += simpleAirPressure;
445
    }
446
 
447
    // 2 samples were added.
448
    pressureMeasurementCount += 2;
449
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
450
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
451
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
452
      pressureMeasurementCount = airPressureSum = 0;
453
    }
454
  }
455
}
1821 - 456
 
1952 - 457
void analog_updateBatteryVoltage(void) {
458
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
459
  // This is divided by 3 --> 10.34 counts per volt.
460
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 461
  debugOut.analog[11] = UBat;
1952 - 462
}
1821 - 463
 
1952 - 464
void analog_update(void) {
465
  analog_updateGyros();
466
  analog_updateAccelerometers();
467
  analog_updateAirPressure();
468
  analog_updateBatteryVoltage();
1612 dongfang 469
}
470
 
1961 - 471
void analog_setNeutral() {
472
  if (gyroOffset_readFromEEProm()) {
473
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_SUMMATION_FACTOR_PITCHROLL;
474
    gyroOffset.offsets[YAW] = 512 * GYRO_SUMMATION_FACTOR_YAW;
475
  }
476
 
477
  if (accOffset_readFromEEProm()) {
478
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_SUMMATION_FACTOR_PITCHROLL;
479
    accOffset.offsets[Z] = 512 * ACC_SUMMATION_FACTOR_Z;
480
  }
481
 
482
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
483
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
484
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
485
 
486
  // Setting offset values has an influence in the analog.c ISR
487
  // Therefore run measurement for 100ms to achive stable readings
488
  delay_ms_Mess(100);
489
 
490
  // Rough estimate. Hmm no nothing happens at calibration anyway.
491
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
492
  // pressureMeasurementCount = 0;
493
}
494
 
495
void analog_calibrateGyros(void) {
1612 dongfang 496
#define GYRO_OFFSET_CYCLES 32
1952 - 497
  uint8_t i, axis;
1963 - 498
  int32_t offsets[3] = { 0, 0, 0 };
1952 - 499
  gyro_calibrate();
500
 
501
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
502
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
503
    delay_ms_Mess(20);
504
    for (axis = PITCH; axis <= YAW; axis++) {
1963 - 505
      offsets[axis] += rawGyroSum[axis];
1952 - 506
    }
507
  }
508
 
509
  for (axis = PITCH; axis <= YAW; axis++) {
1963 - 510
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
1952 - 511
  }
1961 - 512
 
513
  gyroOffset_writeToEEProm();  
1612 dongfang 514
}
515
 
516
/*
517
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
518
 * Does not (!} update the local variables. This must be done with a
519
 * call to analog_calibrate() - this always (?) is done by the caller
520
 * anyway. There would be nothing wrong with updating the variables
521
 * directly from here, though.
522
 */
523
void analog_calibrateAcc(void) {
524
#define ACC_OFFSET_CYCLES 10
1960 - 525
  uint8_t i, axis;
526
  int32_t deltaOffset[3] = { 0, 0, 0 };
527
  int16_t filteredDelta;
528
 
529
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
530
    delay_ms_Mess(10);
531
    for (axis = PITCH; axis <= YAW; axis++) {
532
      deltaOffset[axis] += acc[axis];
533
    }
534
  }
535
 
536
  for (axis = PITCH; axis <= YAW; axis++) {
537
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
538
      / ACC_OFFSET_CYCLES;
539
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
540
  }
1961 - 541
 
1960 - 542
  accOffset_writeToEEProm();  
1612 dongfang 543
}