Subversion Repositories FlightCtrl

Rev

Rev 1821 | Rev 1864 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
54
#include "analog.h"
55
 
56
#include "sensors.h"
57
 
58
// for Delay functions
59
#include "timer0.h"
60
 
61
// For DebugOut
62
#include "uart0.h"
63
 
64
// For reading and writing acc. meter offsets.
65
#include "eeprom.h"
66
 
1796 - 67
// For DebugOut.Digital
68
#include "output.h"
69
 
1854 - 70
/*
71
 * For each A/D conversion cycle, each analog channel is sampled a number of times
72
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 73
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 74
 * They are exported in the analog.h file - but please do not use them! The only
75
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
76
 * the offsets with the DAC.
77
 */
1646 - 78
volatile int16_t rawGyroSum[3];
79
volatile int16_t acc[3];
1821 - 80
volatile int16_t filteredAcc[2] = { 0, 0 };
1612 dongfang 81
 
82
/*
1645 - 83
 * These 4 exported variables are zero-offset. The "PID" ones are used
84
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 85
 * integration to angles.
1612 dongfang 86
 */
1645 - 87
volatile int16_t gyro_PID[2];
88
volatile int16_t gyro_ATT[2];
89
volatile int16_t gyroD[2];
1646 - 90
volatile int16_t yawGyro;
1612 dongfang 91
 
92
/*
93
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
94
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 95
 * to be centered on zero.
1612 dongfang 96
 */
1821 - 97
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
98
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
1612 dongfang 99
 
1821 - 100
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
101
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
1646 - 102
 
1612 dongfang 103
/*
104
 * This allows some experimentation with the gyro filters.
105
 * Should be replaced by #define's later on...
106
 */
1646 - 107
volatile uint8_t GYROS_PID_FILTER;
108
volatile uint8_t GYROS_ATT_FILTER;
109
volatile uint8_t GYROS_D_FILTER;
1612 dongfang 110
volatile uint8_t ACC_FILTER;
111
 
1645 - 112
/*
1775 - 113
 * Air pressure
1645 - 114
 */
1775 - 115
volatile uint8_t rangewidth = 106;
1612 dongfang 116
 
1775 - 117
// Direct from sensor, irrespective of range.
118
// volatile uint16_t rawAirPressure;
119
 
120
// Value of 2 samples, with range.
121
volatile uint16_t simpleAirPressure;
122
 
123
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
124
volatile int32_t filteredAirPressure;
125
 
126
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
127
volatile int32_t airPressureSum;
128
 
129
// The number of samples summed into airPressureSum so far.
130
volatile uint8_t pressureMeasurementCount;
131
 
1612 dongfang 132
/*
1854 - 133
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 134
 * That is divided by 3 below, for a final 10.34 per volt.
135
 * So the initial value of 100 is for 9.7 volts.
136
 */
137
volatile int16_t UBat = 100;
138
 
139
/*
140
 * Control and status.
141
 */
142
volatile uint16_t ADCycleCount = 0;
143
volatile uint8_t analogDataReady = 1;
144
 
145
/*
146
 * Experiment: Measuring vibration-induced sensor noise.
147
 */
1645 - 148
volatile uint16_t gyroNoisePeak[2];
149
volatile uint16_t accNoisePeak[2];
1612 dongfang 150
 
151
// ADC channels
1645 - 152
#define AD_GYRO_YAW       0
153
#define AD_GYRO_ROLL      1
1634 - 154
#define AD_GYRO_PITCH     2
155
#define AD_AIRPRESSURE    3
1645 - 156
#define AD_UBAT           4
157
#define AD_ACC_Z          5
158
#define AD_ACC_ROLL       6
159
#define AD_ACC_PITCH      7
1612 dongfang 160
 
161
/*
162
 * Table of AD converter inputs for each state.
1854 - 163
 * The number of samples summed for each channel is equal to
1612 dongfang 164
 * the number of times the channel appears in the array.
165
 * The max. number of samples that can be taken in 2 ms is:
1854 - 166
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
167
 * loop needs a little time between reading AD values and
1612 dongfang 168
 * re-enabling ADC, the real limit is (how much?) lower.
169
 * The acc. sensor is sampled even if not used - or installed
170
 * at all. The cost is not significant.
171
 */
172
 
1821 - 173
const uint8_t channelsForStates[] PROGMEM = { AD_GYRO_PITCH, AD_GYRO_ROLL,
174
                AD_GYRO_YAW,
1612 dongfang 175
 
1821 - 176
                AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 177
 
1821 - 178
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
1612 dongfang 179
 
1821 - 180
                AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
1612 dongfang 181
 
1821 - 182
                AD_ACC_PITCH, // at 12, finish pitch axis acc.
183
                AD_ACC_ROLL, // at 13, finish roll axis acc.
184
                AD_AIRPRESSURE, // at 14, finish air pressure.
1612 dongfang 185
 
1821 - 186
                AD_GYRO_PITCH, // at 15, finish pitch gyro
187
                AD_GYRO_ROLL, // at 16, finish roll gyro
188
                AD_UBAT // at 17, measure battery.
189
                };
190
 
1612 dongfang 191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
193
 
194
void analog_init(void) {
1821 - 195
        uint8_t sreg = SREG;
196
        // disable all interrupts before reconfiguration
197
        cli();
1612 dongfang 198
 
1821 - 199
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
200
        DDRA = 0x00;
201
        PORTA = 0x00;
202
        // Digital Input Disable Register 0
203
        // Disable digital input buffer for analog adc_channel pins
204
        DIDR0 = 0xFF;
205
        // external reference, adjust data to the right
206
        ADMUX &= ~((1 << REFS1) | (1 << REFS0) | (1 << ADLAR));
207
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
208
        ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
209
        //Set ADC Control and Status Register A
210
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
211
        ADCSRA = (0 << ADEN) | (0 << ADSC) | (0 << ADATE) | (1 << ADPS2) | (1
212
                        << ADPS1) | (1 << ADPS0) | (0 << ADIE);
213
        //Set ADC Control and Status Register B
214
        //Trigger Source to Free Running Mode
215
        ADCSRB &= ~((1 << ADTS2) | (1 << ADTS1) | (1 << ADTS0));
216
        // Start AD conversion
217
        analog_start();
218
        // restore global interrupt flags
219
        SREG = sreg;
1612 dongfang 220
}
221
 
1821 - 222
void measureNoise(const int16_t sensor,
223
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
224
        if (sensor > (int16_t) (*noiseMeasurement)) {
225
                *noiseMeasurement = sensor;
226
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
227
                *noiseMeasurement = -sensor;
228
        } else if (*noiseMeasurement > damping) {
229
                *noiseMeasurement -= damping;
230
        } else {
231
                *noiseMeasurement = 0;
232
        }
1612 dongfang 233
}
234
 
1796 - 235
/*
236
 * Min.: 0
237
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
238
 */
1775 - 239
uint16_t getSimplePressure(int advalue) {
1821 - 240
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 241
}
242
 
1645 - 243
/*****************************************************
1854 - 244
 * Interrupt Service Routine for ADC
245
 * Runs at 312.5 kHz or 3.2 µs. When all states are
246
 * processed the interrupt is disabled and further
1645 - 247
 * AD conversions are stopped.
248
 *****************************************************/
1821 - 249
ISR(ADC_vect)
250
{
251
        static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
252
        static uint16_t sensorInputs[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
253
        static uint16_t pressureAutorangingWait = 25;
254
        uint16_t rawAirPressure;
255
        uint8_t i, axis;
256
        int16_t newrange;
1612 dongfang 257
 
1821 - 258
        // for various filters...
259
        int16_t tempOffsetGyro, tempGyro;
1775 - 260
 
1821 - 261
        sensorInputs[ad_channel] += ADC;
1646 - 262
 
1821 - 263
        /*
264
         * Actually we don't need this "switch". We could do all the sampling into the
265
         * sensorInputs array first, and all the processing after the last sample.
266
         */
267
        switch (state++) {
1645 - 268
 
1821 - 269
        case 8: // Z acc
270
                if (ACC_REVERSED[Z])
271
                        acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
272
                else
273
                        acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
274
                break;
1796 - 275
 
1821 - 276
        case 11: // yaw gyro
277
                rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
278
                if (GYRO_REVERSED[YAW])
279
                        yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
280
                else
281
                        yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
282
                break;
1775 - 283
 
1821 - 284
        case 12: // pitch axis acc.
285
                if (ACC_REVERSED[PITCH])
286
                        acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
287
                else
288
                        acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
1796 - 289
 
1821 - 290
                filteredAcc[PITCH] = (filteredAcc[PITCH] * (ACC_FILTER - 1) + acc[PITCH])
291
                                / ACC_FILTER;
292
                measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
293
                break;
1796 - 294
 
1821 - 295
        case 13: // roll axis acc.
296
                if (ACC_REVERSED[ROLL])
297
                        acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
298
                else
299
                        acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
300
                filteredAcc[ROLL] = (filteredAcc[ROLL] * (ACC_FILTER - 1) + acc[ROLL])
301
                                / ACC_FILTER;
302
                measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
303
                break;
1775 - 304
 
1821 - 305
        case 14: // air pressure
306
                if (pressureAutorangingWait) {
307
                        //A range switch was done recently. Wait for steadying.
308
                        pressureAutorangingWait--;
309
                        DebugOut.Analog[27] = (uint16_t) OCR0A;
310
                        DebugOut.Analog[31] = simpleAirPressure;
311
                        break;
312
                }
1634 - 313
 
1821 - 314
                rawAirPressure = sensorInputs[AD_AIRPRESSURE];
315
                if (rawAirPressure < MIN_RAWPRESSURE) {
316
                        // value is too low, so decrease voltage on the op amp minus input, making the value higher.
317
                        newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
318
                        if (newrange > MIN_RANGES_EXTRAPOLATION) {
319
                                pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
320
                                OCR0A = newrange;
321
                        } else {
322
                                if (OCR0A) {
323
                                        OCR0A--;
324
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
325
                                }
326
                        }
327
                } else if (rawAirPressure > MAX_RAWPRESSURE) {
328
                        // value is too high, so increase voltage on the op amp minus input, making the value lower.
329
                        // If near the end, make a limited increase
330
                        newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
331
                        if (newrange < MAX_RANGES_EXTRAPOLATION) {
332
                                pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
333
                                OCR0A = newrange;
334
                        } else {
335
                                if (OCR0A < 254) {
336
                                        OCR0A++;
337
                                        pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
338
                                }
339
                        }
340
                }
1645 - 341
 
1821 - 342
                // Even if the sample is off-range, use it.
343
                simpleAirPressure = getSimplePressure(rawAirPressure);
344
                DebugOut.Analog[27] = (uint16_t) OCR0A;
345
                DebugOut.Analog[31] = simpleAirPressure;
1645 - 346
 
1821 - 347
                if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
348
                        // Danger: pressure near lower end of range. If the measurement saturates, the
349
                        // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1854 - 350
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
1821 - 351
                        airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
352
                                        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
353
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
354
                } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
355
                        // Danger: pressure near upper end of range. If the measurement saturates, the
356
                        // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1854 - 357
                        DebugOut.Digital[1] |= DEBUG_SENSORLIMIT;
1821 - 358
                        airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
359
                                        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
360
                                                        * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
361
                } else {
362
                        // normal case.
363
                        // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
364
                        // The 2 cases above (end of range) are ignored for this.
1854 - 365
                        DebugOut.Digital[1] &= ~DEBUG_SENSORLIMIT;
1821 - 366
                        if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
367
                                airPressureSum += simpleAirPressure / 2;
368
                        else
369
                                airPressureSum += simpleAirPressure;
370
                }
1645 - 371
 
1821 - 372
                // 2 samples were added.
373
                pressureMeasurementCount += 2;
374
                if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
375
                        filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
376
                                        + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
377
                        pressureMeasurementCount = airPressureSum = 0;
378
                }
1645 - 379
 
1821 - 380
                break;
1645 - 381
 
1821 - 382
        case 15:
383
        case 16: // pitch or roll gyro.
384
                axis = state - 16;
385
                tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
386
                // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
387
                /*
388
                 * Process the gyro data for the PID controller.
389
                 */
390
                // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
391
                //    gyro with a wider range, and helps counter saturation at full control.
1645 - 392
 
1821 - 393
                if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
394
                        if (tempGyro < SENSOR_MIN_PITCHROLL) {
1854 - 395
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
1821 - 396
                                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
397
                        } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1854 - 398
                                DebugOut.Digital[0] |= DEBUG_SENSORLIMIT;
1821 - 399
                                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
400
                                                + SENSOR_MAX_PITCHROLL;
1854 - 401
                        } else {
402
                                DebugOut.Digital[0] &= ~DEBUG_SENSORLIMIT;
1821 - 403
                        }
404
                }
1645 - 405
 
1821 - 406
                // 2) Apply sign and offset, scale before filtering.
407
                if (GYRO_REVERSED[axis]) {
408
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
409
                } else {
410
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
411
                }
1612 dongfang 412
 
1821 - 413
                // 3) Scale and filter.
414
                tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER - 1) + tempOffsetGyro)
415
                                / GYROS_PID_FILTER;
416
 
417
                // 4) Measure noise.
418
                measureNoise(tempOffsetGyro, &gyroNoisePeak[axis],
419
                                GYRO_NOISE_MEASUREMENT_DAMPING);
420
 
421
                // 5) Differential measurement.
422
                gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER - 1) + (tempOffsetGyro
423
                                - gyro_PID[axis])) / GYROS_D_FILTER;
424
 
425
                // 6) Done.
426
                gyro_PID[axis] = tempOffsetGyro;
427
 
428
                /*
429
                 * Now process the data for attitude angles.
430
                 */
431
                tempGyro = rawGyroSum[axis];
432
 
433
                // 1) Apply sign and offset, scale before filtering.
434
                if (GYRO_REVERSED[axis]) {
435
                        tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
436
                } else {
437
                        tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
438
                }
439
 
440
                // 2) Filter.
441
                gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER - 1) + tempOffsetGyro)
442
                                / GYROS_ATT_FILTER;
443
                break;
444
 
445
        case 17:
446
                // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
447
                // This is divided by 3 --> 10.34 counts per volt.
448
                UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
449
                DebugOut.Analog[11] = UBat;
450
                analogDataReady = 1; // mark
451
                ADCycleCount++;
452
                // Stop the sampling. Cycle is over.
453
                state = 0;
454
                for (i = 0; i < 8; i++) {
455
                        sensorInputs[i] = 0;
456
                }
457
                break;
458
        default: {
459
        } // do nothing.
460
        }
461
 
462
        // set up for next state.
463
        ad_channel = pgm_read_byte(&channelsForStates[state]);
464
        // ad_channel = channelsForStates[state];
465
 
466
        // set adc muxer to next ad_channel
467
        ADMUX = (ADMUX & 0xE0) | ad_channel;
468
        // after full cycle stop further interrupts
469
        if (state)
470
                analog_start();
1612 dongfang 471
}
472
 
473
void analog_calibrate(void) {
474
#define GYRO_OFFSET_CYCLES 32
1821 - 475
        uint8_t i, axis;
476
        int32_t deltaOffsets[3] = { 0, 0, 0 };
1612 dongfang 477
 
1821 - 478
        // Set the filters... to be removed again, once some good settings are found.
479
        GYROS_PID_FILTER = (dynamicParams.UserParams[4] & 0b00000011) + 1;
480
        GYROS_ATT_FILTER = ((dynamicParams.UserParams[4] & 0b00001100) >> 2) + 1;
481
        GYROS_D_FILTER = ((dynamicParams.UserParams[4] & 0b00110000) >> 4) + 1;
482
        ACC_FILTER = ((dynamicParams.UserParams[4] & 0b11000000) >> 6) + 1;
1612 dongfang 483
 
1821 - 484
        gyro_calibrate();
1612 dongfang 485
 
1821 - 486
        // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
487
        for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
488
                Delay_ms_Mess(20);
489
                for (axis = PITCH; axis <= YAW; axis++) {
490
                        deltaOffsets[axis] += rawGyroSum[axis];
491
                }
492
        }
1646 - 493
 
1821 - 494
        for (axis = PITCH; axis <= YAW; axis++) {
495
                gyroOffset[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2)
496
                                / GYRO_OFFSET_CYCLES;
497
                DebugOut.Analog[20 + axis] = gyroOffset[axis];
498
        }
1646 - 499
 
1821 - 500
        // Noise is relative to offset. So, reset noise measurements when changing offsets.
501
        gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
1612 dongfang 502
 
1821 - 503
        accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
504
        accOffset[ROLL] = GetParamWord(PID_ACC_ROLL);
505
        accOffset[Z] = GetParamWord(PID_ACC_Z);
1646 - 506
 
1821 - 507
        // Rough estimate. Hmm no nothing happens at calibration anyway.
508
        // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
509
        // pressureMeasurementCount = 0;
1775 - 510
 
1821 - 511
        Delay_ms_Mess(100);
1612 dongfang 512
}
513
 
514
/*
515
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
516
 * Does not (!} update the local variables. This must be done with a
517
 * call to analog_calibrate() - this always (?) is done by the caller
518
 * anyway. There would be nothing wrong with updating the variables
519
 * directly from here, though.
520
 */
521
void analog_calibrateAcc(void) {
522
#define ACC_OFFSET_CYCLES 10
1821 - 523
        uint8_t i, axis;
524
        int32_t deltaOffset[3] = { 0, 0, 0 };
525
        int16_t filteredDelta;
526
        // int16_t pressureDiff, savedRawAirPressure;
1612 dongfang 527
 
1821 - 528
        for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
529
                Delay_ms_Mess(10);
530
                for (axis = PITCH; axis <= YAW; axis++) {
531
                        deltaOffset[axis] += acc[axis];
532
                }
533
        }
1612 dongfang 534
 
1821 - 535
        for (axis = PITCH; axis <= YAW; axis++) {
536
                filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
537
                                / ACC_OFFSET_CYCLES;
538
                accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
539
        }
1646 - 540
 
1821 - 541
        // Save ACC neutral settings to eeprom
542
        SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
543
        SetParamWord(PID_ACC_ROLL, accOffset[ROLL]);
544
        SetParamWord(PID_ACC_Z, accOffset[Z]);
1612 dongfang 545
 
1821 - 546
        // Noise is relative to offset. So, reset noise measurements when
547
        // changing offsets.
548
        accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
1645 - 549
 
1821 - 550
        // Setting offset values has an influence in the analog.c ISR
551
        // Therefore run measurement for 100ms to achive stable readings
552
        Delay_ms_Mess(100);
553
 
554
        // Set the feedback so that air pressure ends up in the middle of the range.
555
        // (raw pressure high --> OCR0A also high...)
556
        /*
557
         OCR0A += ((rawAirPressure - 1024) / rangewidth) - 1;
558
         Delay_ms_Mess(1000);
559
 
560
         pressureDiff = 0;
561
         // DebugOut.Analog[16] = rawAirPressure;
562
 
563
         #define PRESSURE_CAL_CYCLE_COUNT 5
564
         for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
565
         savedRawAirPressure = rawAirPressure;
566
         OCR0A+=2;
567
         Delay_ms_Mess(500);
568
         // raw pressure will decrease.
569
         pressureDiff += (savedRawAirPressure - rawAirPressure);
570
         savedRawAirPressure = rawAirPressure;
571
         OCR0A-=2;
572
         Delay_ms_Mess(500);
573
         // raw pressure will increase.
574
         pressureDiff += (rawAirPressure - savedRawAirPressure);
575
         }
576
 
577
         rangewidth = (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2 * 2);
578
         DebugOut.Analog[27] = rangewidth;
579
         */
1612 dongfang 580
}