Subversion Repositories FlightCtrl

Rev

Rev 2020 | Rev 2032 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
2017 - 7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten und nicht-kommerziellen Gebrauch zulässig ist.
1612 dongfang 8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
1963 - 17
// + auf anderen Webseiten oder Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt und genannt werden
1612 dongfang 19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
1963 - 47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
48
// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
1612 dongfang 49
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
50
// +  POSSIBILITY OF SUCH DAMAGE.
51
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
52
#include <avr/io.h>
53
#include <avr/interrupt.h>
54
#include <avr/pgmspace.h>
1864 - 55
 
1612 dongfang 56
#include "analog.h"
1864 - 57
#include "attitude.h"
1612 dongfang 58
#include "sensors.h"
1964 - 59
#include "printf_P.h"
1612 dongfang 60
 
61
// for Delay functions
62
#include "timer0.h"
63
 
1955 - 64
// For debugOut
1612 dongfang 65
#include "uart0.h"
66
 
67
// For reading and writing acc. meter offsets.
68
#include "eeprom.h"
69
 
1955 - 70
// For debugOut.digital
1796 - 71
#include "output.h"
72
 
1952 - 73
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
74
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
75
 
1969 - 76
const char* recal = ", recalibration needed.";
77
 
1854 - 78
/*
79
 * For each A/D conversion cycle, each analog channel is sampled a number of times
80
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 81
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 82
 * They are exported in the analog.h file - but please do not use them! The only
83
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
84
 * the offsets with the DAC.
85
 */
1952 - 86
volatile uint16_t sensorInputs[8];
2015 - 87
int16_t acc[3];
88
int16_t filteredAcc[3] = { 0,0,0 };
1612 dongfang 89
 
90
/*
1645 - 91
 * These 4 exported variables are zero-offset. The "PID" ones are used
92
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 93
 * integration to angles.
1612 dongfang 94
 */
2015 - 95
int16_t gyro_PID[2];
96
int16_t gyro_ATT[2];
97
int16_t gyroD[2];
98
int16_t yawGyro;
1612 dongfang 99
 
100
/*
101
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
102
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 103
 * to be centered on zero.
1612 dongfang 104
 */
105
 
1969 - 106
sensorOffset_t gyroOffset;
107
sensorOffset_t accOffset;
108
sensorOffset_t gyroAmplifierOffset;
1960 - 109
 
1612 dongfang 110
/*
2015 - 111
 * In the MK coordinate system, nose-down is positive and left-roll is positive.
112
 * If a sensor is used in an orientation where one but not both of the axes has
113
 * an opposite sign, PR_ORIENTATION_REVERSED is set to 1 (true).
114
 * Transform:
115
 * pitch <- pp*pitch + pr*roll
116
 * roll  <- rp*pitch + rr*roll
117
 * Not reversed, GYRO_QUADRANT:
118
 * 0: pp=1, pr=0, rp=0, rr=1  // 0    degrees
119
 * 1: pp=1, pr=-1,rp=1, rr=1  // +45  degrees
120
 * 2: pp=0, pr=-1,rp=1, rr=0  // +90  degrees
121
 * 3: pp=-1,pr=-1,rp=1, rr=1  // +135 degrees
122
 * 4: pp=-1,pr=0, rp=0, rr=-1 // +180 degrees
123
 * 5: pp=-1,pr=1, rp=-1,rr=-1 // +225 degrees
124
 * 6: pp=0, pr=1, rp=-1,rr=0  // +270 degrees
125
 * 7: pp=1, pr=1, rp=-1,rr=1  // +315 degrees
126
 * Reversed, GYRO_QUADRANT:
127
 * 0: pp=-1,pr=0, rp=0, rr=1  // 0    degrees with pitch reversed
128
 * 1: pp=-1,pr=-1,rp=-1,rr=1  // +45  degrees with pitch reversed
129
 * 2: pp=0, pr=-1,rp=-1,rr=0  // +90  degrees with pitch reversed
130
 * 3: pp=1, pr=-1,rp=-1,rr=1  // +135 degrees with pitch reversed
131
 * 4: pp=1, pr=0, rp=0, rr=-1 // +180 degrees with pitch reversed
132
 * 5: pp=1, pr=1, rp=1, rr=-1 // +225 degrees with pitch reversed
133
 * 6: pp=0, pr=1, rp=1, rr=0  // +270 degrees with pitch reversed
134
 * 7: pp=-1,pr=1, rp=1, rr=1  // +315 degrees with pitch reversed
1612 dongfang 135
 */
136
 
2015 - 137
void rotate(int16_t* result, uint8_t quadrant, uint8_t reverse) {
138
  static const int8_t rotationTab[] = {1,1,0,-1,-1,-1,0,1};
139
  // Pitch to Pitch part
2020 - 140
  int8_t xx = reverse ? rotationTab[(quadrant+4)%8] : rotationTab[quadrant];
2015 - 141
  // Roll to Pitch part
142
  int8_t xy = rotationTab[(quadrant+2)%8];
143
  // Pitch to Roll part
144
  int8_t yx = reverse ? rotationTab[(quadrant+2)%8] : rotationTab[(quadrant+6)%8];
145
  // Roll to Roll part
146
  int8_t yy = rotationTab[quadrant];
147
 
148
  int16_t xIn = result[0];
2019 - 149
  result[0] = xx*xIn + xy*result[1];
2015 - 150
  result[1] = yx*xIn + yy*result[1];
151
 
152
  if (quadrant & 1) {
153
        // A rotation was used above, where the factors were too large by sqrt(2).
154
        // So, we multiply by 2^n/sqt(2) and right shift n bits, as to divide by sqrt(2).
155
        // A suitable value for n: Sample is 11 bits. After transformation it is the sum
156
        // of 2 11 bit numbers, so 12 bits. We have 4 bits left...
157
        result[0] = (result[0]*11) >> 4;
158
        result[1] = (result[1]*11) >> 4;
159
  }
160
}
2019 - 161
 
1645 - 162
/*
1775 - 163
 * Air pressure
1645 - 164
 */
1970 - 165
volatile uint8_t rangewidth = 105;
1612 dongfang 166
 
1775 - 167
// Direct from sensor, irrespective of range.
168
// volatile uint16_t rawAirPressure;
169
 
170
// Value of 2 samples, with range.
2015 - 171
uint16_t simpleAirPressure;
1775 - 172
 
2019 - 173
// Value of AIRPRESSURE_OVERSAMPLING samples, with range, filtered.
2015 - 174
int32_t filteredAirPressure;
1775 - 175
 
2026 - 176
#define MAX_AIRPRESSURE_WINDOW_LENGTH 64
177
int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
178
int32_t windowedAirPressure;
179
uint8_t windowPtr;
180
 
1775 - 181
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
2015 - 182
int32_t airPressureSum;
1775 - 183
 
184
// The number of samples summed into airPressureSum so far.
2015 - 185
uint8_t pressureMeasurementCount;
1775 - 186
 
1612 dongfang 187
/*
1854 - 188
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 189
 * That is divided by 3 below, for a final 10.34 per volt.
190
 * So the initial value of 100 is for 9.7 volts.
191
 */
2015 - 192
int16_t UBat = 100;
1612 dongfang 193
 
194
/*
195
 * Control and status.
196
 */
197
volatile uint16_t ADCycleCount = 0;
198
volatile uint8_t analogDataReady = 1;
199
 
200
/*
201
 * Experiment: Measuring vibration-induced sensor noise.
202
 */
2015 - 203
uint16_t gyroNoisePeak[3];
204
uint16_t accNoisePeak[3];
1612 dongfang 205
 
1986 - 206
volatile uint8_t adState;
1987 - 207
volatile uint8_t adChannel;
1986 - 208
 
1612 dongfang 209
// ADC channels
1645 - 210
#define AD_GYRO_YAW       0
211
#define AD_GYRO_ROLL      1
1634 - 212
#define AD_GYRO_PITCH     2
213
#define AD_AIRPRESSURE    3
1645 - 214
#define AD_UBAT           4
215
#define AD_ACC_Z          5
216
#define AD_ACC_ROLL       6
217
#define AD_ACC_PITCH      7
1612 dongfang 218
 
219
/*
220
 * Table of AD converter inputs for each state.
1854 - 221
 * The number of samples summed for each channel is equal to
1612 dongfang 222
 * the number of times the channel appears in the array.
223
 * The max. number of samples that can be taken in 2 ms is:
1854 - 224
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
225
 * loop needs a little time between reading AD values and
1612 dongfang 226
 * re-enabling ADC, the real limit is (how much?) lower.
227
 * The acc. sensor is sampled even if not used - or installed
228
 * at all. The cost is not significant.
229
 */
230
 
1870 - 231
const uint8_t channelsForStates[] PROGMEM = {
232
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
233
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 234
 
1870 - 235
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
236
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
237
 
238
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
239
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
240
  AD_AIRPRESSURE, // at 14, finish air pressure.
241
 
242
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
243
  AD_GYRO_ROLL,   // at 16, finish roll gyro
244
  AD_UBAT         // at 17, measure battery.
245
};
1612 dongfang 246
 
247
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
248
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
249
 
250
void analog_init(void) {
1821 - 251
        uint8_t sreg = SREG;
252
        // disable all interrupts before reconfiguration
253
        cli();
1612 dongfang 254
 
1821 - 255
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
256
        DDRA = 0x00;
257
        PORTA = 0x00;
258
        // Digital Input Disable Register 0
259
        // Disable digital input buffer for analog adc_channel pins
260
        DIDR0 = 0xFF;
261
        // external reference, adjust data to the right
1952 - 262
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 263
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1987 - 264
        ADMUX = (ADMUX & 0xE0);
1821 - 265
        //Set ADC Control and Status Register A
266
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 267
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 268
        //Set ADC Control and Status Register B
269
        //Trigger Source to Free Running Mode
1952 - 270
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
271
 
2026 - 272
        for (uint8_t i=0; i<MAX_AIRPRESSURE_WINDOW_LENGTH; i++) {
273
          airPressureWindow[i] = 0;
274
        }
275
 
276
        windowedAirPressure = 0;
277
 
1952 - 278
        startAnalogConversionCycle();
279
 
1821 - 280
        // restore global interrupt flags
281
        SREG = sreg;
1612 dongfang 282
}
283
 
2015 - 284
uint16_t rawGyroValue(uint8_t axis) {
285
        return sensorInputs[AD_GYRO_PITCH-axis];
286
}
287
 
288
uint16_t rawAccValue(uint8_t axis) {
289
        return sensorInputs[AD_ACC_PITCH-axis];
290
}
291
 
1821 - 292
void measureNoise(const int16_t sensor,
293
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
294
        if (sensor > (int16_t) (*noiseMeasurement)) {
295
                *noiseMeasurement = sensor;
296
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
297
                *noiseMeasurement = -sensor;
298
        } else if (*noiseMeasurement > damping) {
299
                *noiseMeasurement -= damping;
300
        } else {
301
                *noiseMeasurement = 0;
302
        }
1612 dongfang 303
}
304
 
1796 - 305
/*
306
 * Min.: 0
307
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
308
 */
1775 - 309
uint16_t getSimplePressure(int advalue) {
2026 - 310
        uint16_t result = (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
311
        result += (acc[Z] * (staticParams.airpressureAccZCorrection-128)) >> 10;
312
        return result;
1634 - 313
}
314
 
1952 - 315
void startAnalogConversionCycle(void) {
1960 - 316
  analogDataReady = 0;
2017 - 317
 
1952 - 318
  // Stop the sampling. Cycle is over.
319
  for (uint8_t i = 0; i < 8; i++) {
320
    sensorInputs[i] = 0;
321
  }
1986 - 322
  adState = 0;
1987 - 323
  adChannel = AD_GYRO_PITCH;
324
  ADMUX = (ADMUX & 0xE0) | adChannel;
1952 - 325
  startADC();
326
}
327
 
1645 - 328
/*****************************************************
1854 - 329
 * Interrupt Service Routine for ADC
1963 - 330
 * Runs at 312.5 kHz or 3.2 �s. When all states are
1952 - 331
 * processed further conversions are stopped.
1645 - 332
 *****************************************************/
1870 - 333
ISR(ADC_vect) {
1986 - 334
  sensorInputs[adChannel] += ADC;
1952 - 335
  // set up for next state.
1986 - 336
  adState++;
337
  if (adState < sizeof(channelsForStates)) {
338
    adChannel = pgm_read_byte(&channelsForStates[adState]);
339
    // set adc muxer to next adChannel
340
    ADMUX = (ADMUX & 0xE0) | adChannel;
1952 - 341
    // after full cycle stop further interrupts
342
    startADC();
343
  } else {
344
    ADCycleCount++;
345
    analogDataReady = 1;
346
    // do not restart ADC converter. 
347
  }
348
}
1612 dongfang 349
 
1952 - 350
void analog_updateGyros(void) {
351
  // for various filters...
2015 - 352
  int16_t tempOffsetGyro[2], tempGyro;
1952 - 353
 
1991 - 354
  debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 355
  for (uint8_t axis=0; axis<2; axis++) {
2015 - 356
    tempGyro = rawGyroValue(axis);
1952 - 357
    /*
358
     * Process the gyro data for the PID controller.
359
     */
360
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
361
    //    gyro with a wider range, and helps counter saturation at full control.
362
 
1960 - 363
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 364
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
2015 - 365
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
366
                tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
1952 - 367
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
2015 - 368
                debugOut.digital[0] |= DEBUG_SENSORLIMIT;
369
                tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
1952 - 370
      }
371
    }
2015 - 372
 
1952 - 373
    // 2) Apply sign and offset, scale before filtering.
2015 - 374
    tempOffsetGyro[axis] = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
375
  }
376
 
377
  // 2.1: Transform axes.
2020 - 378
  rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
2015 - 379
 
380
  for (uint8_t axis=0; axis<2; axis++) {
381
        // 3) Filter.
382
    tempOffsetGyro[axis] = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro[axis]) / staticParams.gyroPIDFilterConstant;
383
 
1952 - 384
    // 4) Measure noise.
2015 - 385
    measureNoise(tempOffsetGyro[axis], &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
386
 
1952 - 387
    // 5) Differential measurement.
2015 - 388
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro[axis] - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
389
 
1952 - 390
    // 6) Done.
2015 - 391
    gyro_PID[axis] = tempOffsetGyro[axis];
392
 
393
    // Prepare tempOffsetGyro for next calculation below...
394
    tempOffsetGyro[axis] = (rawGyroValue(axis) - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 395
  }
396
 
2015 - 397
  /*
398
   * Now process the data for attitude angles.
399
   */
2020 - 400
   rotate(tempOffsetGyro, staticParams.gyroQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_GYRO_PR);
2015 - 401
 
2017 - 402
   gyro_ATT[PITCH] = tempOffsetGyro[PITCH];
403
   gyro_ATT[ROLL] = tempOffsetGyro[ROLL];
404
 
405
   debugOut.analog[22 + 0] = gyro_PID[0];
406
   debugOut.analog[22 + 1] = gyro_PID[1];
407
 
408
   debugOut.analog[24 + 0] = gyro_ATT[0];
409
   debugOut.analog[24 + 1] = gyro_ATT[1];
410
 
2015 - 411
  // 2) Filter. This should really be quite unnecessary. The integration should gobble up any noise anyway and the values are not used for anything else.
412
  // gyro_ATT[PITCH] = (gyro_ATT[PITCH] * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[PITCH]) / staticParams.attitudeGyroFilter;
413
  // gyro_ATT[ROLL]  = (gyro_ATT[ROLL]  * (staticParams.attitudeGyroFilter - 1) + tempOffsetGyro[ROLL])  / staticParams.attitudeGyroFilter;
414
 
1952 - 415
  // Yaw gyro.
2020 - 416
  if (staticParams.imuReversedFlags & IMU_REVERSE_GYRO_YAW)
1960 - 417
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 418
  else
1960 - 419
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1952 - 420
}
1775 - 421
 
1952 - 422
void analog_updateAccelerometers(void) {
423
  // Pitch and roll axis accelerations.
424
  for (uint8_t axis=0; axis<2; axis++) {
2015 - 425
    acc[axis] = rawAccValue(axis) - accOffset.offsets[axis];
1979 - 426
  }
2015 - 427
 
2020 - 428
  rotate(acc, staticParams.accQuadrant, staticParams.imuReversedFlags & IMU_REVERSE_ACC_XY);
2015 - 429
 
430
  for(uint8_t axis=0; axis<3; axis++) {
1960 - 431
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 432
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
433
  }
2015 - 434
 
435
  // Z acc.
436
  if (staticParams.imuReversedFlags & 8)
437
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
438
  else
439
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
1952 - 440
}
1645 - 441
 
1952 - 442
void analog_updateAirPressure(void) {
443
  static uint16_t pressureAutorangingWait = 25;
444
  uint16_t rawAirPressure;
445
  int16_t newrange;
446
  // air pressure
447
  if (pressureAutorangingWait) {
448
    //A range switch was done recently. Wait for steadying.
449
    pressureAutorangingWait--;
450
  } else {
451
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
452
    if (rawAirPressure < MIN_RAWPRESSURE) {
453
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
454
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
455
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
456
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
457
        OCR0A = newrange;
458
      } else {
459
        if (OCR0A) {
460
          OCR0A--;
461
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 462
        }
1952 - 463
      }
464
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
465
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
466
      // If near the end, make a limited increase
467
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
468
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
469
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
470
        OCR0A = newrange;
471
      } else {
472
        if (OCR0A < 254) {
473
          OCR0A++;
474
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
475
        }
476
      }
477
    }
478
 
479
    // Even if the sample is off-range, use it.
480
    simpleAirPressure = getSimplePressure(rawAirPressure);
481
 
482
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
483
      // Danger: pressure near lower end of range. If the measurement saturates, the
484
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 485
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 486
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
487
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
488
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
489
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
490
      // Danger: pressure near upper end of range. If the measurement saturates, the
491
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 492
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 493
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
494
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
495
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
496
    } else {
497
      // normal case.
2026 - 498
      // If AIRPRESSURE_OVERSAMPLING is an odd number we only want to add half the double sample.
1952 - 499
      // The 2 cases above (end of range) are ignored for this.
1955 - 500
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
2019 - 501
      if (pressureMeasurementCount == AIRPRESSURE_OVERSAMPLING - 1)
1952 - 502
        airPressureSum += simpleAirPressure / 2;
503
      else
504
        airPressureSum += simpleAirPressure;
505
    }
506
 
507
    // 2 samples were added.
508
    pressureMeasurementCount += 2;
2019 - 509
    if (pressureMeasurementCount >= AIRPRESSURE_OVERSAMPLING) {
1952 - 510
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
511
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
512
      pressureMeasurementCount = airPressureSum = 0;
513
    }
2026 - 514
    //int16_t airPressureWindow[MAX_AIRPRESSURE_WINDOW_LENGTH];
515
    //int32_t windowedAirPressure = 0;
516
    //uint8_t windowPtr;
517
    windowedAirPressure += simpleAirPressure;
518
    windowedAirPressure -= airPressureWindow[windowPtr];
519
    airPressureWindow[windowPtr] = simpleAirPressure;
520
    windowPtr = (windowPtr+1) % MAX_AIRPRESSURE_WINDOW_LENGTH;
1952 - 521
  }
522
}
1821 - 523
 
1952 - 524
void analog_updateBatteryVoltage(void) {
525
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
526
  // This is divided by 3 --> 10.34 counts per volt.
527
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 528
  debugOut.analog[11] = UBat;
1952 - 529
}
1821 - 530
 
1952 - 531
void analog_update(void) {
532
  analog_updateGyros();
533
  analog_updateAccelerometers();
534
  analog_updateAirPressure();
535
  analog_updateBatteryVoltage();
1612 dongfang 536
}
537
 
1961 - 538
void analog_setNeutral() {
2018 - 539
  gyro_init();
540
 
1961 - 541
  if (gyroOffset_readFromEEProm()) {
1969 - 542
    printf("gyro offsets invalid%s",recal);
2019 - 543
    gyroOffset.offsets[PITCH] = gyroOffset.offsets[ROLL] = 512 * GYRO_OVERSAMPLING_PITCHROLL;
544
    gyroOffset.offsets[YAW] = 512 * GYRO_OVERSAMPLING_YAW;
1961 - 545
  }
1964 - 546
 
1961 - 547
  if (accOffset_readFromEEProm()) {
1969 - 548
    printf("acc. meter offsets invalid%s",recal);
2019 - 549
    accOffset.offsets[PITCH] = accOffset.offsets[ROLL] = 512 * ACC_OVERSAMPLING_XY;
550
    accOffset.offsets[Z] = 717 * ACC_OVERSAMPLING_Z;
1961 - 551
  }
552
 
553
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
554
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
555
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
556
 
557
  // Setting offset values has an influence in the analog.c ISR
558
  // Therefore run measurement for 100ms to achive stable readings
2015 - 559
  delay_ms_with_adc_measurement(100, 0);
1961 - 560
 
561
  // Rough estimate. Hmm no nothing happens at calibration anyway.
2019 - 562
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_OVERSAMPLING/2);
1961 - 563
  // pressureMeasurementCount = 0;
564
}
565
 
566
void analog_calibrateGyros(void) {
1612 dongfang 567
#define GYRO_OFFSET_CYCLES 32
1952 - 568
  uint8_t i, axis;
1963 - 569
  int32_t offsets[3] = { 0, 0, 0 };
1952 - 570
  gyro_calibrate();
571
 
572
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
573
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
2015 - 574
    delay_ms_with_adc_measurement(10, 1);
1952 - 575
    for (axis = PITCH; axis <= YAW; axis++) {
2015 - 576
      offsets[axis] += rawGyroValue(axis);
1952 - 577
    }
578
  }
579
 
580
  for (axis = PITCH; axis <= YAW; axis++) {
1963 - 581
    gyroOffset.offsets[axis] = (offsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
2018 - 582
 
2019 - 583
    int16_t min = (512-200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
584
    int16_t max = (512+200) * (axis==YAW) ? GYRO_OVERSAMPLING_YAW : GYRO_OVERSAMPLING_PITCHROLL;
2018 - 585
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max)
586
      versionInfo.hardwareErrors[0] |= FC_ERROR0_GYRO_PITCH << axis;
1952 - 587
  }
1961 - 588
 
589
  gyroOffset_writeToEEProm();  
2015 - 590
  startAnalogConversionCycle();
1612 dongfang 591
}
592
 
593
/*
594
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
595
 * Does not (!} update the local variables. This must be done with a
596
 * call to analog_calibrate() - this always (?) is done by the caller
597
 * anyway. There would be nothing wrong with updating the variables
598
 * directly from here, though.
599
 */
600
void analog_calibrateAcc(void) {
2015 - 601
#define ACC_OFFSET_CYCLES 32
1960 - 602
  uint8_t i, axis;
2015 - 603
  int32_t offsets[3] = { 0, 0, 0 };
604
 
1960 - 605
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
2015 - 606
    delay_ms_with_adc_measurement(10, 1);
1960 - 607
    for (axis = PITCH; axis <= YAW; axis++) {
2015 - 608
      offsets[axis] += rawAccValue(axis);
1960 - 609
    }
610
  }
2015 - 611
 
1960 - 612
  for (axis = PITCH; axis <= YAW; axis++) {
2015 - 613
    accOffset.offsets[axis] = (offsets[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
2018 - 614
    int16_t min,max;
615
    if (axis==Z) {
2020 - 616
        if (staticParams.imuReversedFlags & IMU_REVERSE_ACC_Z) {
2018 - 617
        // TODO: This assumes a sensitivity of +/- 2g.
2019 - 618
                min = (256-200) * ACC_OVERSAMPLING_Z;
619
                        max = (256+200) * ACC_OVERSAMPLING_Z;
2018 - 620
        } else {
621
        // TODO: This assumes a sensitivity of +/- 2g.
2019 - 622
                min = (768-200) * ACC_OVERSAMPLING_Z;
623
                        max = (768+200) * ACC_OVERSAMPLING_Z;
2018 - 624
        }
625
    } else {
2019 - 626
        min = (512-200) * ACC_OVERSAMPLING_XY;
627
        max = (512+200) * ACC_OVERSAMPLING_XY;
2018 - 628
    }
629
    if(gyroOffset.offsets[axis] < min || gyroOffset.offsets[axis] > max) {
630
      versionInfo.hardwareErrors[0] |= FC_ERROR0_ACC_X << axis;
631
    }
1960 - 632
  }
1961 - 633
 
2015 - 634
  accOffset_writeToEEProm();
635
  startAnalogConversionCycle();
1612 dongfang 636
}