Subversion Repositories FlightCtrl

Rev

Rev 1955 | Rev 1961 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
1868 - 35
// +     Commercial use (for example: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
1612 dongfang 36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
1864 - 54
 
1612 dongfang 55
#include "analog.h"
1864 - 56
#include "attitude.h"
1612 dongfang 57
#include "sensors.h"
58
 
59
// for Delay functions
60
#include "timer0.h"
61
 
1955 - 62
// For debugOut
1612 dongfang 63
#include "uart0.h"
64
 
65
// For reading and writing acc. meter offsets.
66
#include "eeprom.h"
67
 
1955 - 68
// For debugOut.digital
1796 - 69
#include "output.h"
70
 
1952 - 71
// set ADC enable & ADC Start Conversion & ADC Interrupt Enable bit
72
#define startADC() (ADCSRA |= (1<<ADEN)|(1<<ADSC)|(1<<ADIE))
73
 
1854 - 74
/*
75
 * For each A/D conversion cycle, each analog channel is sampled a number of times
76
 * (see array channelsForStates), and the results for each channel are summed.
1645 - 77
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 78
 * They are exported in the analog.h file - but please do not use them! The only
79
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
80
 * the offsets with the DAC.
81
 */
1952 - 82
volatile uint16_t sensorInputs[8];
1646 - 83
volatile int16_t rawGyroSum[3];
84
volatile int16_t acc[3];
1869 - 85
volatile int16_t filteredAcc[2] = { 0,0 };
1872 - 86
// volatile int32_t stronglyFilteredAcc[3] = { 0,0,0 };
1612 dongfang 87
 
88
/*
1645 - 89
 * These 4 exported variables are zero-offset. The "PID" ones are used
90
 * in the attitude control as rotation rates. The "ATT" ones are for
1854 - 91
 * integration to angles.
1612 dongfang 92
 */
1645 - 93
volatile int16_t gyro_PID[2];
94
volatile int16_t gyro_ATT[2];
95
volatile int16_t gyroD[2];
1646 - 96
volatile int16_t yawGyro;
1612 dongfang 97
 
98
/*
99
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
100
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 101
 * to be centered on zero.
1612 dongfang 102
 */
1960 - 103
/*
1821 - 104
volatile int16_t gyroOffset[3] = { 512 * GYRO_SUMMATION_FACTOR_PITCHROLL, 512
105
                * GYRO_SUMMATION_FACTOR_PITCHROLL, 512 * GYRO_SUMMATION_FACTOR_YAW };
1612 dongfang 106
 
1821 - 107
volatile int16_t accOffset[3] = { 512 * ACC_SUMMATION_FACTOR_PITCHROLL, 512
108
                * ACC_SUMMATION_FACTOR_PITCHROLL, 512 * ACC_SUMMATION_FACTOR_Z };
1960 - 109
                */
1646 - 110
 
1960 - 111
sensorOffset_t gyroOffset;
112
sensorOffset_t accOffset;
113
 
1612 dongfang 114
/*
115
 * This allows some experimentation with the gyro filters.
116
 * Should be replaced by #define's later on...
117
 */
118
 
1645 - 119
/*
1775 - 120
 * Air pressure
1645 - 121
 */
1775 - 122
volatile uint8_t rangewidth = 106;
1612 dongfang 123
 
1775 - 124
// Direct from sensor, irrespective of range.
125
// volatile uint16_t rawAirPressure;
126
 
127
// Value of 2 samples, with range.
128
volatile uint16_t simpleAirPressure;
129
 
130
// Value of AIRPRESSURE_SUMMATION_FACTOR samples, with range, filtered.
131
volatile int32_t filteredAirPressure;
132
 
133
// Partial sum of AIRPRESSURE_SUMMATION_FACTOR samples.
134
volatile int32_t airPressureSum;
135
 
136
// The number of samples summed into airPressureSum so far.
137
volatile uint8_t pressureMeasurementCount;
138
 
1612 dongfang 139
/*
1854 - 140
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
1612 dongfang 141
 * That is divided by 3 below, for a final 10.34 per volt.
142
 * So the initial value of 100 is for 9.7 volts.
143
 */
144
volatile int16_t UBat = 100;
145
 
146
/*
147
 * Control and status.
148
 */
149
volatile uint16_t ADCycleCount = 0;
150
volatile uint8_t analogDataReady = 1;
151
 
152
/*
153
 * Experiment: Measuring vibration-induced sensor noise.
154
 */
1645 - 155
volatile uint16_t gyroNoisePeak[2];
156
volatile uint16_t accNoisePeak[2];
1612 dongfang 157
 
158
// ADC channels
1645 - 159
#define AD_GYRO_YAW       0
160
#define AD_GYRO_ROLL      1
1634 - 161
#define AD_GYRO_PITCH     2
162
#define AD_AIRPRESSURE    3
1645 - 163
#define AD_UBAT           4
164
#define AD_ACC_Z          5
165
#define AD_ACC_ROLL       6
166
#define AD_ACC_PITCH      7
1612 dongfang 167
 
168
/*
169
 * Table of AD converter inputs for each state.
1854 - 170
 * The number of samples summed for each channel is equal to
1612 dongfang 171
 * the number of times the channel appears in the array.
172
 * The max. number of samples that can be taken in 2 ms is:
1854 - 173
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
174
 * loop needs a little time between reading AD values and
1612 dongfang 175
 * re-enabling ADC, the real limit is (how much?) lower.
176
 * The acc. sensor is sampled even if not used - or installed
177
 * at all. The cost is not significant.
178
 */
179
 
1870 - 180
const uint8_t channelsForStates[] PROGMEM = {
181
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW,
182
  AD_ACC_PITCH, AD_ACC_ROLL, AD_AIRPRESSURE,
1612 dongfang 183
 
1870 - 184
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_ACC_Z, // at 8, measure Z acc.
185
  AD_GYRO_PITCH, AD_GYRO_ROLL, AD_GYRO_YAW, // at 11, finish yaw gyro
186
 
187
  AD_ACC_PITCH,   // at 12, finish pitch axis acc.
188
  AD_ACC_ROLL,    // at 13, finish roll axis acc.
189
  AD_AIRPRESSURE, // at 14, finish air pressure.
190
 
191
  AD_GYRO_PITCH,  // at 15, finish pitch gyro
192
  AD_GYRO_ROLL,   // at 16, finish roll gyro
193
  AD_UBAT         // at 17, measure battery.
194
};
1612 dongfang 195
 
196
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
197
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
198
 
199
void analog_init(void) {
1821 - 200
        uint8_t sreg = SREG;
201
        // disable all interrupts before reconfiguration
202
        cli();
1612 dongfang 203
 
1821 - 204
        //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
205
        DDRA = 0x00;
206
        PORTA = 0x00;
207
        // Digital Input Disable Register 0
208
        // Disable digital input buffer for analog adc_channel pins
209
        DIDR0 = 0xFF;
210
        // external reference, adjust data to the right
1952 - 211
        ADMUX &= ~((1<<REFS1)|(1<<REFS0)|(1<<ADLAR));
1821 - 212
        // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
1952 - 213
        ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
1821 - 214
        //Set ADC Control and Status Register A
215
        //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
1952 - 216
        ADCSRA = (1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0);
1821 - 217
        //Set ADC Control and Status Register B
218
        //Trigger Source to Free Running Mode
1952 - 219
        ADCSRB &= ~((1<<ADTS2)|(1<<ADTS1)|(1<<ADTS0));
220
 
221
        startAnalogConversionCycle();
222
 
1821 - 223
        // restore global interrupt flags
224
        SREG = sreg;
1612 dongfang 225
}
226
 
1821 - 227
void measureNoise(const int16_t sensor,
228
                volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
229
        if (sensor > (int16_t) (*noiseMeasurement)) {
230
                *noiseMeasurement = sensor;
231
        } else if (-sensor > (int16_t) (*noiseMeasurement)) {
232
                *noiseMeasurement = -sensor;
233
        } else if (*noiseMeasurement > damping) {
234
                *noiseMeasurement -= damping;
235
        } else {
236
                *noiseMeasurement = 0;
237
        }
1612 dongfang 238
}
239
 
1796 - 240
/*
241
 * Min.: 0
242
 * Max: About 106 * 240 + 2047 = 27487; it is OK with just a 16 bit type.
243
 */
1775 - 244
uint16_t getSimplePressure(int advalue) {
1821 - 245
        return (uint16_t) OCR0A * (uint16_t) rangewidth + advalue;
1634 - 246
}
247
 
1952 - 248
void startAnalogConversionCycle(void) {
1960 - 249
  analogDataReady = 0;
1952 - 250
  // Stop the sampling. Cycle is over.
251
  for (uint8_t i = 0; i < 8; i++) {
252
    sensorInputs[i] = 0;
253
  }
254
  ADMUX = (ADMUX & 0xE0) | channelsForStates[0];
255
  startADC();
256
}
257
 
1645 - 258
/*****************************************************
1854 - 259
 * Interrupt Service Routine for ADC
260
 * Runs at 312.5 kHz or 3.2 µs. When all states are
1952 - 261
 * processed further conversions are stopped.
1645 - 262
 *****************************************************/
1870 - 263
ISR(ADC_vect) {
1952 - 264
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
265
  sensorInputs[ad_channel] += ADC;
266
  // set up for next state.
267
  state++;
268
  if (state < 18) {
269
    ad_channel = pgm_read_byte(&channelsForStates[state]);
270
    // set adc muxer to next ad_channel
271
    ADMUX = (ADMUX & 0xE0) | ad_channel;
272
    // after full cycle stop further interrupts
273
    startADC();
274
  } else {
275
    state = 0;
276
    ADCycleCount++;
277
    analogDataReady = 1;
278
    // do not restart ADC converter. 
279
  }
280
}
1612 dongfang 281
 
1952 - 282
void analog_updateGyros(void) {
283
  // for various filters...
284
  int16_t tempOffsetGyro, tempGyro;
285
 
286
  for (uint8_t axis=0; axis<2; axis++) {
287
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH-axis];
288
    /*
289
     * Process the gyro data for the PID controller.
290
     */
291
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
292
    //    gyro with a wider range, and helps counter saturation at full control.
293
 
1960 - 294
    if (staticParams.bitConfig & CFG_GYRO_SATURATION_PREVENTION) {
1952 - 295
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
1955 - 296
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 297
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
298
      } else if (tempGyro > SENSOR_MAX_PITCHROLL) {
1955 - 299
        debugOut.digital[0] |= DEBUG_SENSORLIMIT;
1952 - 300
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE
301
          + SENSOR_MAX_PITCHROLL;
302
      } else {
1955 - 303
        debugOut.digital[0] &= ~DEBUG_SENSORLIMIT;
1952 - 304
      }
305
    }
306
 
307
    // 2) Apply sign and offset, scale before filtering.
308
    if (GYRO_REVERSED[axis]) {
1960 - 309
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 310
    } else {
1960 - 311
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 312
    }
313
 
314
    // 3) Scale and filter.
1960 - 315
    tempOffsetGyro = (gyro_PID[axis] * (staticParams.gyroPIDFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroPIDFilterConstant;
1952 - 316
 
317
    // 4) Measure noise.
318
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
319
 
320
    // 5) Differential measurement.
1960 - 321
    gyroD[axis] = (gyroD[axis] * (staticParams.gyroDFilterConstant - 1) + (tempOffsetGyro - gyro_PID[axis])) / staticParams.gyroDFilterConstant;
1952 - 322
 
323
    // 6) Done.
324
    gyro_PID[axis] = tempOffsetGyro;
325
 
326
    /*
327
     * Now process the data for attitude angles.
328
     */
329
    tempGyro = rawGyroSum[axis];
330
 
331
    // 1) Apply sign and offset, scale before filtering.
332
    if (GYRO_REVERSED[axis]) {
1960 - 333
      tempOffsetGyro = (gyroOffset.offsets[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
1952 - 334
    } else {
1960 - 335
      tempOffsetGyro = (tempGyro - gyroOffset.offsets[axis]) * GYRO_FACTOR_PITCHROLL;
1952 - 336
    }
337
 
338
    // 2) Filter.
1960 - 339
    gyro_ATT[axis] = (gyro_ATT[axis] * (staticParams.gyroATTFilterConstant - 1) + tempOffsetGyro) / staticParams.gyroATTFilterConstant;
1952 - 340
  }
341
 
342
  // Yaw gyro.
343
  rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
344
  if (GYRO_REVERSED[YAW])
1960 - 345
    yawGyro = gyroOffset.offsets[YAW] - sensorInputs[AD_GYRO_YAW];
1952 - 346
  else
1960 - 347
    yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset.offsets[YAW];
1955 - 348
 
349
  debugOut.analog[3] = gyro_ATT[PITCH];
350
  debugOut.analog[4] = gyro_ATT[ROLL];
351
  debugOut.analog[5] = yawGyro;
1952 - 352
}
1775 - 353
 
1952 - 354
void analog_updateAccelerometers(void) {
355
  // Pitch and roll axis accelerations.
356
  for (uint8_t axis=0; axis<2; axis++) {
357
    if (ACC_REVERSED[axis])
1960 - 358
      acc[axis] = accOffset.offsets[axis] - sensorInputs[AD_ACC_PITCH-axis];
1952 - 359
    else
1960 - 360
      acc[axis] = sensorInputs[AD_ACC_PITCH-axis] - accOffset.offsets[axis];
1952 - 361
 
1960 - 362
    filteredAcc[axis] = (filteredAcc[axis] * (staticParams.accFilterConstant - 1) + acc[axis]) / staticParams.accFilterConstant;
1952 - 363
 
364
    /*
365
      stronglyFilteredAcc[PITCH] =
366
      (stronglyFilteredAcc[PITCH] * 99 + acc[PITCH] * 10) / 100;
367
    */
368
 
369
    measureNoise(acc[axis], &accNoisePeak[axis], 1);
370
  }
371
 
372
  // Z acc.
373
  if (ACC_REVERSED[Z])
1960 - 374
    acc[Z] = accOffset.offsets[Z] - sensorInputs[AD_ACC_Z];
1952 - 375
  else
1960 - 376
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset.offsets[Z];
1646 - 377
 
1952 - 378
  /*
379
    stronglyFilteredAcc[Z] =
380
    (stronglyFilteredAcc[Z] * 99 + acc[Z] * 10) / 100;
381
  */
382
}
1645 - 383
 
1952 - 384
void analog_updateAirPressure(void) {
385
  static uint16_t pressureAutorangingWait = 25;
386
  uint16_t rawAirPressure;
387
  int16_t newrange;
388
  // air pressure
389
  if (pressureAutorangingWait) {
390
    //A range switch was done recently. Wait for steadying.
391
    pressureAutorangingWait--;
1955 - 392
    debugOut.analog[27] = (uint16_t) OCR0A;
393
    debugOut.analog[31] = simpleAirPressure;
1952 - 394
  } else {
395
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
396
    if (rawAirPressure < MIN_RAWPRESSURE) {
397
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
398
      newrange = OCR0A - (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4; // (MAX_RAWPRESSURE - rawAirPressure) / (rangewidth * 2) + 1;
399
      if (newrange > MIN_RANGES_EXTRAPOLATION) {
400
        pressureAutorangingWait = (OCR0A - newrange) * AUTORANGE_WAIT_FACTOR; // = OCRA0 - OCRA0 +
401
        OCR0A = newrange;
402
      } else {
403
        if (OCR0A) {
404
          OCR0A--;
405
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
1821 - 406
        }
1952 - 407
      }
408
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
409
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
410
      // If near the end, make a limited increase
411
      newrange = OCR0A + (MAX_RAWPRESSURE - MIN_RAWPRESSURE) / (rangewidth * 4); // 4;  // (rawAirPressure - MIN_RAWPRESSURE) / (rangewidth * 2) - 1;
412
      if (newrange < MAX_RANGES_EXTRAPOLATION) {
413
        pressureAutorangingWait = (newrange - OCR0A) * AUTORANGE_WAIT_FACTOR;
414
        OCR0A = newrange;
415
      } else {
416
        if (OCR0A < 254) {
417
          OCR0A++;
418
          pressureAutorangingWait = AUTORANGE_WAIT_FACTOR;
419
        }
420
      }
421
    }
422
 
423
    // Even if the sample is off-range, use it.
424
    simpleAirPressure = getSimplePressure(rawAirPressure);
1955 - 425
    debugOut.analog[27] = (uint16_t) OCR0A;
426
    debugOut.analog[31] = simpleAirPressure;
1952 - 427
 
428
    if (simpleAirPressure < MIN_RANGES_EXTRAPOLATION * rangewidth) {
429
      // Danger: pressure near lower end of range. If the measurement saturates, the
430
      // copter may climb uncontrolledly... Simulate a drastic reduction in pressure.
1955 - 431
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 432
      airPressureSum += (int16_t) MIN_RANGES_EXTRAPOLATION * rangewidth
433
        + (simpleAirPressure - (int16_t) MIN_RANGES_EXTRAPOLATION
434
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
435
    } else if (simpleAirPressure > MAX_RANGES_EXTRAPOLATION * rangewidth) {
436
      // Danger: pressure near upper end of range. If the measurement saturates, the
437
      // copter may descend uncontrolledly... Simulate a drastic increase in pressure.
1955 - 438
      debugOut.digital[1] |= DEBUG_SENSORLIMIT;
1952 - 439
      airPressureSum += (int16_t) MAX_RANGES_EXTRAPOLATION * rangewidth
440
        + (simpleAirPressure - (int16_t) MAX_RANGES_EXTRAPOLATION
441
           * rangewidth) * PRESSURE_EXTRAPOLATION_COEFF;
442
    } else {
443
      // normal case.
444
      // If AIRPRESSURE_SUMMATION_FACTOR is an odd number we only want to add half the double sample.
445
      // The 2 cases above (end of range) are ignored for this.
1955 - 446
      debugOut.digital[1] &= ~DEBUG_SENSORLIMIT;
1952 - 447
      if (pressureMeasurementCount == AIRPRESSURE_SUMMATION_FACTOR - 1)
448
        airPressureSum += simpleAirPressure / 2;
449
      else
450
        airPressureSum += simpleAirPressure;
451
    }
452
 
453
    // 2 samples were added.
454
    pressureMeasurementCount += 2;
455
    if (pressureMeasurementCount >= AIRPRESSURE_SUMMATION_FACTOR) {
456
      filteredAirPressure = (filteredAirPressure * (AIRPRESSURE_FILTER - 1)
457
                             + airPressureSum + AIRPRESSURE_FILTER / 2) / AIRPRESSURE_FILTER;
458
      pressureMeasurementCount = airPressureSum = 0;
459
    }
460
  }
461
}
1821 - 462
 
1952 - 463
void analog_updateBatteryVoltage(void) {
464
  // Battery. The measured value is: (V * 1k/11k)/3v * 1024 = 31.03 counts per volt (max. measurable is 33v).
465
  // This is divided by 3 --> 10.34 counts per volt.
466
  UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
1955 - 467
  debugOut.analog[11] = UBat;
1952 - 468
}
1821 - 469
 
1952 - 470
void analog_update(void) {
471
  analog_updateGyros();
472
  analog_updateAccelerometers();
473
  analog_updateAirPressure();
474
  analog_updateBatteryVoltage();
1612 dongfang 475
}
476
 
477
void analog_calibrate(void) {
478
#define GYRO_OFFSET_CYCLES 32
1952 - 479
  uint8_t i, axis;
480
  int32_t deltaOffsets[3] = { 0, 0, 0 };
481
  gyro_calibrate();
482
 
483
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
484
  for (i = 0; i < GYRO_OFFSET_CYCLES; i++) {
485
    delay_ms_Mess(20);
486
    for (axis = PITCH; axis <= YAW; axis++) {
487
      deltaOffsets[axis] += rawGyroSum[axis];
488
    }
489
  }
490
 
491
  for (axis = PITCH; axis <= YAW; axis++) {
1960 - 492
    gyroOffset.offsets[axis] = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
493
    debugOut.analog[6+axis] = gyroOffset.offsets[axis];
1952 - 494
  }
495
 
496
  // Noise is relativ to offset. So, reset noise measurements when changing offsets.
497
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
498
 
1960 - 499
  accOffset_readFromEEProm();
500
  // accOffset[PITCH] = getParamWord(PID_ACC_PITCH);
501
  // accOffset[ROLL] = getParamWord(PID_ACC_ROLL);
502
  // accOffset[Z] = getParamWord(PID_ACC_Z);
1952 - 503
 
504
  // Rough estimate. Hmm no nothing happens at calibration anyway.
505
  // airPressureSum = simpleAirPressure * (AIRPRESSURE_SUMMATION_FACTOR/2);
506
  // pressureMeasurementCount = 0;
507
 
508
  delay_ms_Mess(100);
1612 dongfang 509
}
510
 
511
/*
512
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
513
 * Does not (!} update the local variables. This must be done with a
514
 * call to analog_calibrate() - this always (?) is done by the caller
515
 * anyway. There would be nothing wrong with updating the variables
516
 * directly from here, though.
517
 */
518
void analog_calibrateAcc(void) {
519
#define ACC_OFFSET_CYCLES 10
1960 - 520
  uint8_t i, axis;
521
  int32_t deltaOffset[3] = { 0, 0, 0 };
522
  int16_t filteredDelta;
523
  // int16_t pressureDiff, savedRawAirPressure;
524
 
525
  for (i = 0; i < ACC_OFFSET_CYCLES; i++) {
526
    delay_ms_Mess(10);
527
    for (axis = PITCH; axis <= YAW; axis++) {
528
      deltaOffset[axis] += acc[axis];
529
    }
530
  }
531
 
532
  for (axis = PITCH; axis <= YAW; axis++) {
533
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2)
534
      / ACC_OFFSET_CYCLES;
535
    accOffset.offsets[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
536
  }
537
 
538
  // Save ACC neutral settings to eeprom
539
  // setParamWord(PID_ACC_PITCH, accOffset[PITCH]);
540
  // setParamWord(PID_ACC_ROLL, accOffset[ROLL]);
541
  // setParamWord(PID_ACC_Z, accOffset[Z]);
542
  accOffset_writeToEEProm();  
1612 dongfang 543
 
1960 - 544
  // Noise is relative to offset. So, reset noise measurements when
545
  // changing offsets.
546
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
547
 
548
  // Setting offset values has an influence in the analog.c ISR
549
  // Therefore run measurement for 100ms to achive stable readings
550
  delay_ms_Mess(100);
1612 dongfang 551
}