Subversion Repositories FlightCtrl

Rev

Rev 1645 | Rev 1796 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
1612 dongfang 1
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
// + Copyright (c) 04.2007 Holger Buss
3
// + Nur für den privaten Gebrauch
4
// + www.MikroKopter.com
5
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
6
// + Es gilt für das gesamte Projekt (Hardware, Software, Binärfiles, Sourcecode und Dokumentation),
7
// + dass eine Nutzung (auch auszugsweise) nur für den privaten (nicht-kommerziellen) Gebrauch zulässig ist.
8
// + Sollten direkte oder indirekte kommerzielle Absichten verfolgt werden, ist mit uns (info@mikrokopter.de) Kontakt
9
// + bzgl. der Nutzungsbedingungen aufzunehmen.
10
// + Eine kommerzielle Nutzung ist z.B.Verkauf von MikroKoptern, Bestückung und Verkauf von Platinen oder Bausätzen,
11
// + Verkauf von Luftbildaufnahmen, usw.
12
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
13
// + Werden Teile des Quellcodes (mit oder ohne Modifikation) weiterverwendet oder veröffentlicht,
14
// + unterliegen sie auch diesen Nutzungsbedingungen und diese Nutzungsbedingungen incl. Copyright müssen dann beiliegen
15
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
16
// + Sollte die Software (auch auszugesweise) oder sonstige Informationen des MikroKopter-Projekts
17
// + auf anderen Webseiten oder sonstigen Medien veröffentlicht werden, muss unsere Webseite "http://www.mikrokopter.de"
18
// + eindeutig als Ursprung verlinkt werden
19
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
20
// + Keine Gewähr auf Fehlerfreiheit, Vollständigkeit oder Funktion
21
// + Benutzung auf eigene Gefahr
22
// + Wir übernehmen keinerlei Haftung für direkte oder indirekte Personen- oder Sachschäden
23
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
24
// + Die Portierung der Software (oder Teile davon) auf andere Systeme (ausser der Hardware von www.mikrokopter.de) ist nur
25
// + mit unserer Zustimmung zulässig
26
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
27
// + Die Funktion printf_P() unterliegt ihrer eigenen Lizenz und ist hiervon nicht betroffen
28
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
29
// + Redistributions of source code (with or without modifications) must retain the above copyright notice,
30
// + this list of conditions and the following disclaimer.
31
// +   * Neither the name of the copyright holders nor the names of contributors may be used to endorse or promote products derived
32
// +     from this software without specific prior written permission.
33
// +   * The use of this project (hardware, software, binary files, sources and documentation) is only permittet
34
// +     for non-commercial use (directly or indirectly)
35
// +     Commercial use (for excample: selling of MikroKopters, selling of PCBs, assembly, ...) is only permitted
36
// +     with our written permission
37
// +   * If sources or documentations are redistributet on other webpages, out webpage (http://www.MikroKopter.de) must be
38
// +     clearly linked as origin
39
// +   * porting to systems other than hardware from www.mikrokopter.de is not allowed
40
// +  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
41
// +  AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
42
// +  IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
43
// +  ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
44
// +  LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
45
// +  CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
46
// +  SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
47
// +  INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN// +  CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
48
// +  ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
49
// +  POSSIBILITY OF SUCH DAMAGE.
50
// ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
51
#include <avr/io.h>
52
#include <avr/interrupt.h>
53
#include <avr/pgmspace.h>
54
#include "analog.h"
55
 
56
#include "sensors.h"
57
 
58
// for Delay functions
59
#include "timer0.h"
60
 
61
// For DebugOut
62
#include "uart0.h"
63
 
64
// For reading and writing acc. meter offsets.
65
#include "eeprom.h"
66
 
67
/*
1645 - 68
 * For each A/D conversion cycle, each analog channel is sampled a number of times
69
 * (see array channelsForStates), and the results for each channel are summed.
70
 * Here are those for the gyros and the acc. meters. They are not zero-offset.
1612 dongfang 71
 * They are exported in the analog.h file - but please do not use them! The only
72
 * reason for the export is that the ENC-03_FC1.3 modules needs them for calibrating
73
 * the offsets with the DAC.
74
 */
1646 - 75
volatile int16_t rawGyroSum[3];
76
volatile int16_t acc[3];
77
volatile int16_t filteredAcc[2]={0,0};
1612 dongfang 78
 
79
/*
1645 - 80
 * These 4 exported variables are zero-offset. The "PID" ones are used
81
 * in the attitude control as rotation rates. The "ATT" ones are for
82
 * integration to angles.
1612 dongfang 83
 */
1645 - 84
volatile int16_t gyro_PID[2];
85
volatile int16_t gyro_ATT[2];
86
volatile int16_t gyroD[2];
1646 - 87
volatile int16_t yawGyro;
1612 dongfang 88
 
89
/*
90
 * Offset values. These are the raw gyro and acc. meter sums when the copter is
91
 * standing still. They are used for adjusting the gyro and acc. meter values
1645 - 92
 * to be centered on zero.
1612 dongfang 93
 */
1646 - 94
volatile int16_t gyroOffset[3] = {
95
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
96
        512 * GYRO_SUMMATION_FACTOR_PITCHROLL,
97
        512 * GYRO_SUMMATION_FACTOR_YAW
98
};
1612 dongfang 99
 
1646 - 100
volatile int16_t accOffset[3] = {
101
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
102
        512 * ACC_SUMMATION_FACTOR_PITCHROLL,
103
        512 * ACC_SUMMATION_FACTOR_Z
104
};
105
 
1612 dongfang 106
/*
107
 * This allows some experimentation with the gyro filters.
108
 * Should be replaced by #define's later on...
109
 */
1646 - 110
volatile uint8_t GYROS_PID_FILTER;
111
volatile uint8_t GYROS_ATT_FILTER;
112
volatile uint8_t GYROS_D_FILTER;
1612 dongfang 113
volatile uint8_t ACC_FILTER;
114
 
1645 - 115
/*
116
 * Air pressure measurement.
117
 */
118
#define MIN_RAWPRESSURE 200
119
#define MAX_RAWPRESSURE (1023-MIN_RAWPRESSURE)
120
volatile uint8_t rangewidth = 53;
121
volatile uint16_t rawAirPressure;
122
volatile uint16_t filteredAirPressure;
1612 dongfang 123
 
124
/*
125
 * Battery voltage, in units of: 1k/11k / 3V * 1024 = 31.03 per volt.
126
 * That is divided by 3 below, for a final 10.34 per volt.
127
 * So the initial value of 100 is for 9.7 volts.
128
 */
129
volatile int16_t UBat = 100;
130
 
131
/*
132
 * Control and status.
133
 */
134
volatile uint16_t ADCycleCount = 0;
135
volatile uint8_t analogDataReady = 1;
136
 
137
/*
138
 * Experiment: Measuring vibration-induced sensor noise.
139
 */
1645 - 140
volatile uint16_t gyroNoisePeak[2];
141
volatile uint16_t accNoisePeak[2];
1612 dongfang 142
 
143
// ADC channels
1645 - 144
#define AD_GYRO_YAW       0
145
#define AD_GYRO_ROLL      1
1634 - 146
#define AD_GYRO_PITCH     2
147
#define AD_AIRPRESSURE    3
1645 - 148
#define AD_UBAT           4
149
#define AD_ACC_Z          5
150
#define AD_ACC_ROLL       6
151
#define AD_ACC_PITCH      7
1612 dongfang 152
 
153
/*
154
 * Table of AD converter inputs for each state.
155
 * The number of samples summed for each channel is equal to
156
 * the number of times the channel appears in the array.
157
 * The max. number of samples that can be taken in 2 ms is:
158
 * 20e6 / 128 / 13 / (1/2e-3) = 24. Since the main control
159
 * loop needs a little time between reading AD values and
160
 * re-enabling ADC, the real limit is (how much?) lower.
161
 * The acc. sensor is sampled even if not used - or installed
162
 * at all. The cost is not significant.
163
 */
164
 
165
const uint8_t channelsForStates[] PROGMEM = {
166
  AD_GYRO_PITCH,
167
  AD_GYRO_ROLL,
168
  AD_GYRO_YAW,
169
 
1634 - 170
  AD_ACC_PITCH,
1612 dongfang 171
  AD_ACC_ROLL,
1634 - 172
  // AD_AIRPRESSURE,
1612 dongfang 173
 
174
  AD_GYRO_PITCH,
175
  AD_GYRO_ROLL,
1634 - 176
  AD_ACC_Z,       // at 7, measure Z acc.
1612 dongfang 177
 
178
  AD_GYRO_PITCH,
179
  AD_GYRO_ROLL,
180
  AD_GYRO_YAW,    // at 10, finish yaw gyro
181
 
182
  AD_ACC_PITCH,   // at 11, finish pitch axis acc.
183
  AD_ACC_ROLL,    // at 12, finish roll axis acc.
1634 - 184
  AD_AIRPRESSURE, // at 13, finish air pressure.
1612 dongfang 185
 
1634 - 186
  AD_GYRO_PITCH,  // at 14, finish pitch gyro
187
  AD_GYRO_ROLL,   // at 15, finish roll gyro
188
  AD_UBAT         // at 16, measure battery.
1612 dongfang 189
};
190
 
191
// Feature removed. Could be reintroduced later - but should work for all gyro types then.
192
// uint8_t GyroDefectPitch = 0, GyroDefectRoll = 0, GyroDefectYaw = 0;
193
 
194
void analog_init(void) {
195
  uint8_t sreg = SREG;
196
  // disable all interrupts before reconfiguration
197
  cli();
198
 
199
  //ADC0 ... ADC7 is connected to PortA pin 0 ... 7
200
  DDRA = 0x00;
201
  PORTA = 0x00;
202
  // Digital Input Disable Register 0
203
  // Disable digital input buffer for analog adc_channel pins
204
  DIDR0 = 0xFF;
205
  // external reference, adjust data to the right
206
  ADMUX &= ~((1 << REFS1)|(1 << REFS0)|(1 << ADLAR));
207
  // set muxer to ADC adc_channel 0 (0 to 7 is a valid choice)
208
  ADMUX = (ADMUX & 0xE0) | AD_GYRO_PITCH;
209
  //Set ADC Control and Status Register A
210
  //Auto Trigger Enable, Prescaler Select Bits to Division Factor 128, i.e. ADC clock = SYSCKL/128 = 156.25 kHz
211
  ADCSRA = (0<<ADEN)|(0<<ADSC)|(0<<ADATE)|(1<<ADPS2)|(1<<ADPS1)|(1<<ADPS0)|(0<<ADIE);
212
  //Set ADC Control and Status Register B
213
  //Trigger Source to Free Running Mode
214
  ADCSRB &= ~((1 << ADTS2)|(1 << ADTS1)|(1 << ADTS0));
215
  // Start AD conversion
216
  analog_start();
217
  // restore global interrupt flags
218
  SREG = sreg;
219
}
220
 
221
void measureNoise(const int16_t sensor, volatile uint16_t* const noiseMeasurement, const uint8_t damping) {
222
  if (sensor > (int16_t)(*noiseMeasurement)) {
223
    *noiseMeasurement = sensor;
224
  } else if (-sensor > (int16_t)(*noiseMeasurement)) {
225
    *noiseMeasurement = -sensor;
226
  } else if (*noiseMeasurement > damping) {
227
    *noiseMeasurement -= damping;
228
  } else {
229
    *noiseMeasurement = 0;
230
  }
231
}
232
 
1634 - 233
uint16_t getAbsPressure(int advalue) {
1645 - 234
  return (uint16_t)OCR0A * (uint16_t)rangewidth + advalue;
1634 - 235
}
236
 
237
uint16_t filterAirPressure(uint16_t rawpressure) {
238
  return rawpressure;
239
}
240
 
1645 - 241
/*****************************************************
242
 * Interrupt Service Routine for ADC            
243
 * Runs at 312.5 kHz or 3.2 µs. When all states are
244
 * processed the interrupt is disabled and further
245
 * AD conversions are stopped.
246
 *****************************************************/
1612 dongfang 247
ISR(ADC_vect) {
248
  static uint8_t ad_channel = AD_GYRO_PITCH, state = 0;
249
  static uint16_t sensorInputs[8] = {0,0,0,0,0,0,0,0};
1645 - 250
  static uint8_t pressure_wait = 10;
251
  uint8_t i, axis;
252
  int16_t range;
1634 - 253
 
1612 dongfang 254
  // for various filters...
1645 - 255
  int16_t tempOffsetGyro, tempGyro;
1612 dongfang 256
 
257
  sensorInputs[ad_channel] += ADC;
258
 
259
  /*
260
   * Actually we don't need this "switch". We could do all the sampling into the
261
   * sensorInputs array first, and all the processing after the last sample.
262
   */
263
  switch(state++) {
264
  case 7: // Z acc      
1646 - 265
  if (ACC_REVERSED[Z])
266
    acc[Z] = accOffset[Z] - sensorInputs[AD_ACC_Z];
267
  else
268
    acc[Z] = sensorInputs[AD_ACC_Z] - accOffset[Z];
269
  break;
1612 dongfang 270
 
271
  case 10: // yaw gyro
1646 - 272
    rawGyroSum[YAW] = sensorInputs[AD_GYRO_YAW];
273
    if (GYRO_REVERSED[YAW])
274
      yawGyro = gyroOffset[YAW] - sensorInputs[AD_GYRO_YAW];
275
    else
276
      yawGyro = sensorInputs[AD_GYRO_YAW] - gyroOffset[YAW];
1612 dongfang 277
    break;
278
 
279
  case 11: // pitch axis acc.
1646 - 280
    if (ACC_REVERSED[PITCH])
281
      acc[PITCH] = accOffset[PITCH] - sensorInputs[AD_ACC_PITCH];
282
    else
283
      acc[PITCH] = sensorInputs[AD_ACC_PITCH] - accOffset[PITCH];
284
 
1645 - 285
    filteredAcc[PITCH] = (filteredAcc[PITCH] * (ACC_FILTER-1) + acc[PITCH]) / ACC_FILTER;
286
    measureNoise(acc[PITCH], &accNoisePeak[PITCH], 1);
1612 dongfang 287
    break;
288
 
289
  case 12: // roll axis acc.
1646 - 290
    if (ACC_REVERSED[ROLL])
291
      acc[ROLL] = accOffset[ROLL] - sensorInputs[AD_ACC_ROLL];
292
    else
293
      acc[ROLL] = sensorInputs[AD_ACC_ROLL] - accOffset[ROLL];
1645 - 294
    filteredAcc[ROLL] = (filteredAcc[ROLL] * (ACC_FILTER-1) + acc[ROLL]) / ACC_FILTER;
295
    measureNoise(acc[ROLL], &accNoisePeak[ROLL], 1);
1612 dongfang 296
    break;
1645 - 297
 
1634 - 298
  case 13: // air pressure
1645 - 299
    if (pressure_wait) {
300
      // A range switch was done recently. Wait for steadying.
301
      pressure_wait--;
302
      break;
303
    }
304
    range = OCR0A;
305
    rawAirPressure = sensorInputs[AD_AIRPRESSURE];
306
    if (rawAirPressure < MIN_RAWPRESSURE) {
1634 - 307
      // value is too low, so decrease voltage on the op amp minus input, making the value higher.
1645 - 308
      range -= (MAX_RAWPRESSURE - rawAirPressure) / rangewidth - 1;
309
      if (range < 0) range = 0;
310
      pressure_wait = (OCR0A - range) * 4;
311
      OCR0A = range;
312
    } else if (rawAirPressure > MAX_RAWPRESSURE) {
1634 - 313
      // value is too high, so increase voltage on the op amp minus input, making the value lower.
1645 - 314
      range += (rawAirPressure - MIN_RAWPRESSURE) / rangewidth - 1;
315
      if (range > 254) range = 254;
316
      pressure_wait = (range - OCR0A) * 4;
317
      OCR0A = range;
1634 - 318
    } else {
1645 - 319
      filteredAirPressure = filterAirPressure(getAbsPressure(rawAirPressure));
1634 - 320
    }
1645 - 321
 
1646 - 322
    DebugOut.Analog[13] = range;
323
    DebugOut.Analog[14] = rawAirPressure;
324
    DebugOut.Analog[15] = filteredAirPressure;
1634 - 325
    break;
326
 
1645 - 327
  case 14:
328
  case 15: // pitch or roll gyro.
329
    axis = state - 15;
330
    tempGyro = rawGyroSum[axis] = sensorInputs[AD_GYRO_PITCH - axis];
331
        // DebugOut.Analog[6 + 3 * axis ] = tempGyro;
332
    /*
333
     * Process the gyro data for the PID controller.
334
     */
335
    // 1) Extrapolate: Near the ends of the range, we boost the input significantly. This simulates a
336
    //    gyro with a wider range, and helps counter saturation at full control.
337
 
338
    if (staticParams.GlobalConfig & CFG_ROTARY_RATE_LIMITER) {
339
      if (tempGyro < SENSOR_MIN_PITCHROLL) {
340
        tempGyro = tempGyro * EXTRAPOLATION_SLOPE - EXTRAPOLATION_LIMIT;
341
      }
342
      else if (tempGyro > SENSOR_MAX_PITCHROLL) {
343
        tempGyro = (tempGyro - SENSOR_MAX_PITCHROLL) * EXTRAPOLATION_SLOPE + SENSOR_MAX_PITCHROLL;
344
      }
345
    }
346
 
347
    // 2) Apply sign and offset, scale before filtering.
1646 - 348
    if (GYRO_REVERSED[axis]) {
1645 - 349
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
350
    } else {
351
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
352
    }
353
 
354
    // 3) Scale and filter.
1646 - 355
    tempOffsetGyro = (gyro_PID[axis] * (GYROS_PID_FILTER-1) + tempOffsetGyro) / GYROS_PID_FILTER;
1645 - 356
 
357
    // 4) Measure noise.
358
    measureNoise(tempOffsetGyro, &gyroNoisePeak[axis], GYRO_NOISE_MEASUREMENT_DAMPING);
359
 
360
    // 5) Differential measurement. 
1646 - 361
    gyroD[axis] = (gyroD[axis] * (GYROS_D_FILTER-1) + (tempOffsetGyro - gyro_PID[axis])) / GYROS_D_FILTER;
1645 - 362
 
363
    // 6) Done.
364
    gyro_PID[axis] = tempOffsetGyro;
365
 
366
    /*
367
     * Now process the data for attitude angles.
368
     */
369
    tempGyro = rawGyroSum[axis];
370
 
371
    // 1) Apply sign and offset, scale before filtering.
1646 - 372
    if (GYRO_REVERSED[axis]) {
1645 - 373
      tempOffsetGyro = (gyroOffset[axis] - tempGyro) * GYRO_FACTOR_PITCHROLL;
374
    } else {
375
      tempOffsetGyro = (tempGyro - gyroOffset[axis]) * GYRO_FACTOR_PITCHROLL;
376
    }
377
 
378
    // 2) Filter.
1646 - 379
    gyro_ATT[axis] = (gyro_ATT[axis] * (GYROS_ATT_FILTER-1) + tempOffsetGyro) / GYROS_ATT_FILTER;
1612 dongfang 380
    break;
381
 
1634 - 382
  case 16:
1612 dongfang 383
    // battery
384
    UBat = (3 * UBat + sensorInputs[AD_UBAT] / 3) / 4;
385
    analogDataReady = 1; // mark
386
    ADCycleCount++;
387
    // Stop the sampling. Cycle is over.
388
    state = 0;
389
    for (i=0; i<8; i++) {
390
      sensorInputs[i] = 0;
391
    }
392
    break;
393
  default: {} // do nothing.
394
  }
395
 
396
  // set up for next state.
397
  ad_channel = pgm_read_byte(&channelsForStates[state]);
398
  // ad_channel = channelsForStates[state];
399
 
400
  // set adc muxer to next ad_channel
401
  ADMUX = (ADMUX & 0xE0) | ad_channel;
402
  // after full cycle stop further interrupts
403
  if(state) analog_start();
404
}
405
 
406
void analog_calibrate(void) {
407
#define GYRO_OFFSET_CYCLES 32
1646 - 408
  uint8_t i, axis;
409
  int32_t deltaOffsets[3] = {0,0,0};
410
  int16_t filteredDelta;
1612 dongfang 411
 
412
  // Set the filters... to be removed again, once some good settings are found.
1646 - 413
  GYROS_PID_FILTER = (dynamicParams.UserParams[4]   & 0b00000011)       + 1;
414
  GYROS_ATT_FILTER = ((dynamicParams.UserParams[4]  & 0b00001100) >> 2) + 1;
415
  GYROS_D_FILTER = ((dynamicParams.UserParams[4]    & 0b00110000) >> 4) + 1;
416
  ACC_FILTER = ((dynamicParams.UserParams[4]        & 0b11000000) >> 6) + 1;
1612 dongfang 417
 
418
  gyro_calibrate();
419
 
420
  // determine gyro bias by averaging (requires that the copter does not rotate around any axis!)
421
  for(i=0; i < GYRO_OFFSET_CYCLES; i++) {
422
    Delay_ms_Mess(10);
1646 - 423
    for (axis=0; axis<=YAW; axis++) {
424
      deltaOffsets[axis] += rawGyroSum[axis] - gyroOffset[axis];
425
    }
1612 dongfang 426
  }
1646 - 427
 
428
  for (axis=0; axis<=YAW; axis++) {
429
    filteredDelta = (deltaOffsets[axis] + GYRO_OFFSET_CYCLES / 2) / GYRO_OFFSET_CYCLES;
430
    gyroOffset[axis] += filteredDelta;
431
  }
432
 
433
  // Noise is relative to offset. So, reset noise measurements when changing offsets.
1645 - 434
  gyroNoisePeak[PITCH] = gyroNoisePeak[ROLL] = 0;
1612 dongfang 435
 
1646 - 436
  accOffset[PITCH] = GetParamWord(PID_ACC_PITCH);
437
  accOffset[ROLL]  = GetParamWord(PID_ACC_ROLL);
438
  accOffset[Z]     = GetParamWord(PID_ACC_Z);
439
 
440
  Delay_ms_Mess(100);
1612 dongfang 441
}
442
 
443
/*
444
 * Find acc. offsets for a neutral reading, and write them to EEPROM.
445
 * Does not (!} update the local variables. This must be done with a
446
 * call to analog_calibrate() - this always (?) is done by the caller
447
 * anyway. There would be nothing wrong with updating the variables
448
 * directly from here, though.
449
 */
450
void analog_calibrateAcc(void) {
451
#define ACC_OFFSET_CYCLES 10
1646 - 452
  uint8_t i, axis;
453
  int32_t deltaOffset[3] = {0,0,0};
454
  int16_t filteredDelta;
1645 - 455
  // int16_t pressureDiff, savedRawAirPressure;
1612 dongfang 456
 
457
  for(i=0; i < ACC_OFFSET_CYCLES; i++) {
458
    Delay_ms_Mess(10);
1646 - 459
    for (axis=0; axis<=YAW; axis++) {
460
          deltaOffset[axis] += acc[axis];
461
        }
1612 dongfang 462
  }
463
 
1646 - 464
  for (axis=0; axis<=YAW; axis++) {
465
    filteredDelta = (deltaOffset[axis] + ACC_OFFSET_CYCLES / 2) / ACC_OFFSET_CYCLES;
466
    accOffset[axis] += ACC_REVERSED[axis] ? -filteredDelta : filteredDelta;
467
  }
468
 
1612 dongfang 469
  // Save ACC neutral settings to eeprom
1646 - 470
  SetParamWord(PID_ACC_PITCH, accOffset[PITCH]);
471
  SetParamWord(PID_ACC_ROLL,  accOffset[ROLL]);
472
  SetParamWord(PID_ACC_Z,     accOffset[Z]);
1612 dongfang 473
 
474
  // Noise is relative to offset. So, reset noise measurements when
475
  // changing offsets.
1645 - 476
  accNoisePeak[PITCH] = accNoisePeak[ROLL] = 0;
1646 - 477
 
1645 - 478
  // Setting offset values has an influence in the analog.c ISR
479
  // Therefore run measurement for 100ms to achive stable readings
1646 - 480
  Delay_ms_Mess(100);
1645 - 481
 
482
  // Set the feedback so that air pressure ends up in the middle of the range.
483
  // (raw pressure high --> OCR0A also high...)
484
  // OCR0A += (rawAirPressure - 512) / rangewidth;
485
  // Delay_ms_Mess(500);
486
 
487
  /*
488
    pressureDiff = 0;
489
    DebugOut.Analog[16] = rawAirPressure;
490
 
491
    #define PRESSURE_CAL_CYCLE_COUNT 2
492
    for (i=0; i<PRESSURE_CAL_CYCLE_COUNT; i++) {
493
    savedRawAirPressure = rawAirPressure;
494
    OCR0A++;
495
    Delay_ms_Mess(200);
496
    // raw pressure will decrease.
497
    pressureDiff += (savedRawAirPressure - rawAirPressure);
498
 
499
    savedRawAirPressure = rawAirPressure;
500
    OCR0A--;
501
    Delay_ms_Mess(200);
502
    // raw pressure will increase.
503
    pressureDiff += (rawAirPressure - savedRawAirPressure);
504
    }
505
 
1646 - 506
    DebugOut.Analog[16] = rangewidth =
1645 - 507
    (pressureDiff + PRESSURE_CAL_CYCLE_COUNT * 2 - 1) / (PRESSURE_CAL_CYCLE_COUNT * 2);
508
  */
1612 dongfang 509
}