Subversion Repositories FlightCtrl

Rev

Rev 701 | Go to most recent revision | Details | Last modification | View Log | RSS feed

Rev Author Line No. Line
700 killagreg 1
/*
2
 
3
Copyright 2007, Niklas Nold
4
 
5
This program (files compass.c and compass.h) is free software; you can redistribute it and/or modify
6
it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation;
7
either version 3 of the License, or (at your option) any later version.
8
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
9
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10
GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License
11
along with this program. If not, see <http://www.gnu.org/licenses/>.
12
 
13
Please note: All the other files for the project "Mikrokopter" by H. Buss are under the license (license_buss.txt) published by www.mikrokopter.de
14
*/
15
#include <stdlib.h>
16
#include <avr/io.h>
17
#include <avr/interrupt.h>
18
 
19
#include "mm3.h"
20
#include "main.h"
21
#include "mymath.h"
22
#include "fc.h"
23
#include "timer0.h"
24
#include "rc.h"
25
#include "eeprom.h"
26
 
27
#define MAX_AXIS_VALUE          500
28
 
29
 
30
typedef struct
31
{
32
        uint8_t STATE;
33
        uint16_t DRDY;
34
        uint8_t AXIS;
35
        int16_t x_axis;
36
        int16_t y_axis;
37
        int16_t z_axis;
38
} MM3_working_t;
39
 
40
 
41
// MM3 State Machine
42
#define MM3_STATE_RESET                         0
43
#define MM3_STATE_START_TRANSFER        1
44
#define MM3_STATE_WAIT_DRDY                     2
45
#define MM3_STATE_DRDY                          3
46
#define MM3_STATE_BYTE2                         4
47
 
48
#define MM3_X_AXIS              0x01
49
#define MM3_Y_AXIS              0x02
50
#define MM3_Z_AXIS              0x03
51
 
52
 
53
#define MM3_PERIOD_32   0x00
54
#define MM3_PERIOD_64   0x10
55
#define MM3_PERIOD_128  0x20
56
#define MM3_PERIOD_256  0x30
57
#define MM3_PERIOD_512  0x40
58
#define MM3_PERIOD_1024 0x50
59
#define MM3_PERIOD_2048 0x60
60
#define MM3_PERIOD_4096 0x70
61
 
62
MM3_calib_t MM3_calib;
63
volatile MM3_working_t MM3;
64
 
65
 
66
 
67
/*********************************************/
68
/*  Initialize Interface to MM3 Compass      */
69
/*********************************************/
70
void MM3_init(void)
71
{
72
        uint8_t sreg = SREG;
73
 
74
        cli();
75
 
76
        // Configure Pins for SPI
77
        // set SCK (PB7), MOSI (PB5) as output
78
        DDRB |= (1<<DDB7)|(1<<DDB5);
79
        // set MISO (PB6) as input
80
        DDRB &= ~(1<<DDB6);
81
 
82
        // Output Pins PC4->MM3_SS ,PC5->MM3_RESET
83
        DDRC |= (1<<DDC4)|(1<<DDC5);
84
        // set pins permanent to low
85
        PORTC &= ~((1<<PORTC4)|(1<<PORTC5));
86
 
87
        // Initialize SPI-Interface
88
        // Enable interrupt (SPIE=1)
89
        // Enable SPI bus (SPE=1)
90
        // MSB transmitted first (DORD = 0)
91
        // Master SPI Mode (MSTR=1)
92
        // Clock polarity low whn idle (CPOL=0)
93
        // clock phase sample at leading edge (CPHA=0)
94
        // clock rate = SYSCLK/128 (SPI2X=0, SPR1=1, SPR0=1) 20MHz/128 = 156.25kHz
95
        SPCR = (1<<SPIE)|(1<<SPE)|(0<<DORD)|(1<<MSTR)|(0<<CPOL)|(0<<CPHA)|(1<<SPR1)|(1<<SPR0);
96
        SPSR &= ~(1<<SPI2X);
97
 
98
    // Init Statemachine
99
        MM3.AXIS = MM3_X_AXIS;
100
        MM3.STATE = MM3_STATE_RESET;
101
 
102
        // Read calibration from EEprom
103
        MM3_calib.X_off = (int8_t)GetParamByte(PID_MM3_X_OFF);
104
        MM3_calib.Y_off = (int8_t)GetParamByte(PID_MM3_Y_OFF);
105
        MM3_calib.Z_off = (int8_t)GetParamByte(PID_MM3_Z_OFF);
106
        MM3_calib.X_range = (int16_t)GetParamWord(PID_MM3_X_RANGE);
107
        MM3_calib.Y_range = (int16_t)GetParamWord(PID_MM3_Y_RANGE);
108
        MM3_calib.Z_range = (int16_t)GetParamWord(PID_MM3_Z_RANGE);
109
 
110
        SREG = sreg;
111
}
112
 
113
 
114
/*********************************************/
115
/*  Get Data from MM3                        */
116
/*********************************************/
117
void MM3_timer0() // called every 102.4 ms by timer 0 ISR
118
{
119
        switch (MM3.STATE)
120
        {
121
        case MM3_STATE_RESET:
122
                PORTC |= (1<<PORTC5);   // PC5 to High, MM3 Reset
123
                MM3.STATE = MM3_STATE_START_TRANSFER;
124
                return;
125
 
126
        case MM3_STATE_START_TRANSFER:
127
                PORTC &= ~(1<<PORTC5);  // PC4 auf Low (was 102.4 µs at high level)
128
 
129
                // write to SPDR triggers automatically the transfer MOSI MISO
130
                // MM3 Period, + AXIS code
131
                if (MM3.AXIS == MM3_X_AXIS) SPDR = MM3_PERIOD_256 + MM3_X_AXIS;
132
                else if (MM3.AXIS == MM3_Y_AXIS) SPDR = MM3_PERIOD_256 + MM3_Y_AXIS;
133
                else SPDR = MM3_PERIOD_256 + MM3_Z_AXIS; // MM3_Z_AXIS
134
 
135
                // DRDY line is not connected, therefore
136
                // wait before reading data back
137
                MM3.DRDY = SetDelay(8); // wait 8ms for data ready
138
                MM3.STATE = MM3_STATE_WAIT_DRDY;
139
                return;
140
 
141
        case MM3_STATE_WAIT_DRDY:
142
                if (CheckDelay(MM3.DRDY))
143
                {
144
                        // write something into SPDR to trigger data reading
145
                        SPDR = 0x00;
146
                        MM3.STATE = MM3_STATE_DRDY;
147
                }
148
                return;
149
        }
150
}
151
 
152
 
153
/*********************************************/
154
/*  Interrupt SPI transfer complete          */
155
/*********************************************/
156
ISR(SPI_STC_vect)
157
{
158
        static int8_t tmp;
159
        int16_t value;
160
 
161
        switch (MM3.STATE)
162
        {
163
        // 1st byte received
164
        case MM3_STATE_DRDY:
165
                tmp = SPDR;     // store 1st byte
166
                SPDR = 0x00;    // trigger transfer of 2nd byte
167
                MM3.STATE = MM3_STATE_BYTE2;
168
                return;
169
 
170
        case MM3_STATE_BYTE2:           // 2nd byte received
171
                value = (int16_t)tmp;   // combine the 1st and 2nd byte to a word
172
                value <<= 8;            // shift 1st byte to MSB-Position
173
                value |= (int16_t)SPDR; // add 2nd byte
174
 
175
                if(abs(value) < MAX_AXIS_VALUE)         // ignore spikes
176
                {
177
                        switch (MM3.AXIS)
178
                        {
179
                        case MM3_X_AXIS:
180
                                MM3.x_axis = value;
181
                                MM3.AXIS = MM3_Y_AXIS;
182
                                break;
183
                        case MM3_Y_AXIS:
184
                                MM3.y_axis = value;
185
                                MM3.AXIS = MM3_Z_AXIS;
186
                                break;
187
                        case MM3_Z_AXIS:
188
                                MM3.z_axis = value;
189
                                MM3.AXIS = MM3_X_AXIS;
190
                                break;
191
                        default:
192
                                MM3.AXIS = MM3_X_AXIS;
193
                                break;
194
                        }
195
                }
196
                MM3.STATE = MM3_STATE_RESET;
197
        }
198
}
199
 
200
 
201
 
202
/*********************************************/
203
/*  Calibrate Compass                        */
204
/*********************************************/
205
void MM3_calibrate(void)
206
{
207
        int16_t x_min = 0, x_max = 0, y_min = 0, y_max = 0, z_min = 0, z_max = 0;
208
        uint8_t measurement = 50, beeper = 0;
209
        uint16_t timer;
210
 
211
        GRN_ON;
212
        ROT_OFF;
213
 
214
        // get maximum and minimum reading of all axis
215
        while (measurement)
216
        {
217
                if (MM3.x_axis > x_max) x_max = MM3.x_axis;
218
                else if (MM3.x_axis < x_min) x_min = MM3.x_axis;
219
 
220
                if (MM3.y_axis > y_max) y_max = MM3.y_axis;
221
                else if (MM3.y_axis < y_min) y_min = MM3.y_axis;
222
 
223
                if (MM3.z_axis > z_max) z_max = MM3.z_axis;
224
                else if (MM3.z_axis < z_min) z_min = MM3.z_axis;
225
 
226
                if (!beeper)
227
                {
228
                        ROT_FLASH;
229
                        GRN_FLASH;
230
                        BeepTime = 50;
231
                        beeper = 50;
232
                }
233
                beeper--;
234
 
235
                // loop with period of 10 ms / 100 Hz
236
                timer = SetDelay(10);
237
                while(!CheckDelay(timer));
238
 
239
                // If Gas is less than 100, stop calibration with a delay of 0.5 seconds
240
                if (PPM_in[ParamSet.ChannelAssignment[CH_GAS]] < 100) measurement--;
241
        }
242
 
243
        // Rage of all axis
244
        MM3_calib.X_range = (x_max - x_min);
245
        MM3_calib.Y_range = (y_max - y_min);
246
        MM3_calib.Z_range = (z_max - z_min);
247
 
248
        // Offset of all axis
249
        MM3_calib.X_off = (x_max + x_min) / 2;
250
        MM3_calib.Y_off = (y_max + y_min) / 2;
251
        MM3_calib.Z_off = (z_max + z_min) / 2;
252
 
253
        // save to EEProm
254
        SetParamByte(PID_MM3_X_OFF,   (uint8_t)MM3_calib.X_off);
255
        SetParamByte(PID_MM3_Y_OFF,   (uint8_t)MM3_calib.Y_off);
256
        SetParamByte(PID_MM3_Z_OFF,   (uint8_t)MM3_calib.Z_off);
257
        SetParamWord(PID_MM3_X_RANGE, (uint16_t)MM3_calib.X_range);
258
        SetParamWord(PID_MM3_Y_RANGE, (uint16_t)MM3_calib.Y_range);
259
        SetParamWord(PID_MM3_Z_RANGE, (uint16_t)MM3_calib.Z_range);
260
}
261
 
262
 
263
/*********************************************/
264
/*  Calculate north direction (heading)      */
265
/*********************************************/
266
int16_t MM3_heading(void)
267
{
268
        int32_t sin_nick, cos_nick, sin_roll, cos_roll, sin_yaw, cos_yaw;
269
        int32_t  Hx, Hy, Hz, Hx_corr, Hy_corr;
270
        int16_t angle;
271
        uint16_t div_factor;
272
        int16_t heading;
273
 
274
        // calibration factor for transforming Gyro Integrals to angular degrees
275
        div_factor = (uint16_t)ParamSet.UserParam3 * 8;
276
 
277
        // Offset correction and normalization (values of H are +/- 512)
278
        Hx = (((int32_t)(MM3.x_axis - MM3_calib.X_off)) * 1024) / (int32_t)MM3_calib.X_range;
279
        Hy = (((int32_t)(MM3.y_axis - MM3_calib.Y_off)) * 1024) / (int32_t)MM3_calib.Y_range;
280
        Hz = (((int32_t)(MM3.z_axis - MM3_calib.Z_off)) * 1024) / (int32_t)MM3_calib.Z_range;
281
 
282
        // Compensate the angle of the MM3-arrow to the head of the MK by a yaw rotation transformation
283
    // assuming the MM3 board is mounted parallel to the frame.
284
    // User Param 4 is used to define the positive angle from the MM3-arrow to the MK heading
285
    // in a top view counter clockwise direction.
286
    // North is in opposite direction of the small arrow on the MM3 board.
287
    // Therefore 180 deg must be added to that angle.
288
        angle = ((int16_t)ParamSet.UserParam4 + 180);
289
        // wrap angle to interval of 0°- 359°
290
        angle += 360;
291
        angle %= 360;
292
        sin_yaw = (int32_t)(c_sin_8192(angle));
293
        cos_yaw = (int32_t)(c_cos_8192(angle));
294
 
295
        Hx_corr = Hx;
296
        Hy_corr = Hy;
297
 
298
        // rotate
299
        Hx = (Hx_corr * cos_yaw - Hy_corr  * sin_yaw) / 8192;
300
        Hy = (Hx_corr * sin_yaw + Hy_corr  * cos_yaw) / 8192;
301
 
302
 
303
    // tilt compensation
304
 
305
        // calibration factor for transforming Gyro Integrals to angular degrees
306
        div_factor = (uint16_t)ParamSet.UserParam3 * 8;
307
 
308
        // calculate sinus cosinus of nick and tilt angle
309
        angle = (IntegralNick/div_factor);
310
        sin_nick = (int32_t)(c_sin_8192(angle));
311
        cos_nick = (int32_t)(c_cos_8192(angle));
312
 
313
        angle = (IntegralRoll/div_factor);
314
        sin_roll = (int32_t)(c_sin_8192(angle));
315
        cos_roll = (int32_t)(c_cos_8192(angle));
316
 
317
        Hx_corr = Hx * cos_nick;
318
        Hx_corr -= Hz * sin_nick;
319
        Hx_corr /= 8192;
320
 
321
        Hy_corr = Hy * cos_roll;
322
        Hy_corr += Hz * sin_roll;
323
        Hy_corr /= 8192;
324
 
325
        // calculate Heading
326
        heading = c_atan2(Hy_corr, Hx_corr);
327
 
328
        // transform range from +-180° to 0°- 359°
329
        heading += 360;
330
        heading %= 360;
331
 
332
return heading;
333
}