Subversion Repositories Projects

Rev

Rev 2147 | Go to most recent revision | Details | Compare with Previous | Last modification | View Log | RSS feed

Rev Author Line No. Line
2136 - 1
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
2
//++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
3
 
4
//############################################################################
5
//# HISTORY  gps.c
6
//#
7
//# 03.08.2015 cebra
8
//# - add: Routine um aus gegebenen Koordinaten mit Abstand und Winkel eine ZielKoordinate zu berechnen
9
//#    int nmea_move_horz(
10
//#    const nmeaPOS *start_pos,   /**< Start position in radians */
11
//#    nmeaPOS *end_pos,           /**< Result position in radians */
12
//#    double azimuth,             /**< Azimuth (degree) [0, 359] */
13
//#    double distance)             /**< Distance (km) */
14
//#
15
//# 27.06.2014 OG - NEU
16
//# - chg: auf #include "../gps/mymath.h" angepasst
17
//#
18
//# 20.06.2014 OG - NEU
19
//############################################################################
20
 
21
 
22
#include "../cpu.h"
23
#include <string.h>
24
#include <util/delay.h>
25
#include <avr/interrupt.h>
26
#include <stdlib.h>
27
#include <math.h>
28
#include "../main.h"
29
 
30
#include "../mk-data-structs.h"
31
#include "../gps/mymath.h"
32
#include "gps.h"
33
 
34
 
35
/*
36
// definiert in: mk_data-stucts.h
37
typedef struct
38
{
39
    u16 Distance;       // distance to target in cm
40
    s16 Bearing;        // course to target in deg
41
} __attribute__((packed)) GPS_PosDev_t;
42
*/
43
 
44
/*
45
// definiert in: mk_data-stucts.h
46
typedef struct
47
{
48
    s32 Longitude;      // in 1E-7 deg
49
    s32 Latitude;       // in 1E-7 deg
50
    s32 Altitude;       // in mm
51
    u8 Status;          // validity of data
52
} __attribute__((packed)) GPS_Pos_t;
53
*/
54
 
55
 
56
//--------------------------------------------------------------
57
 
58
#define NMEA_PI                     (3.141592653589793)             /**< PI value */
59
#define NMEA_PI180                  (NMEA_PI / 180)                 /**< PI division by 180 */
60
#define NMEA_EARTHRADIUS_KM         (6378)                          /**< Earth's mean radius in km */
61
#define R                           (6371)
62
#define NMEA_EARTHRADIUS_M          (NMEA_EARTHRADIUS_KM * 1000)    /**< Earth's mean radius in m */
63
#define NMEA_EARTH_SEMIMAJORAXIS_M  (6378137.0)                     /**< Earth's semi-major axis in m according WGS84 */
64
#define NMEA_EARTH_SEMIMAJORAXIS_KM (NMEA_EARTHMAJORAXIS_KM / 1000) /**< Earth's semi-major axis in km according WGS 84 */
65
#define NMEA_EARTH_FLATTENING       (1 / 298.257223563)             /**< Earth's flattening according WGS 84 */
66
#define NMEA_DOP_FACTOR             (5)                             /**< Factor for translating DOP to meters */
67
 
2192 - 68
 
69
// Definitonen für FollowMeStep2
70
#define LONG_DIV                    10000000
71
#define LAT_DIV                     LONG_DIV
72
#define FOLLOWME_DEG2M              1/111111*LONG_DIV
73
 
74
 
2136 - 75
# define NMEA_POSIX(x)  x
76
 
77
 
78
 
79
/**
80
 * \fn nmea_degree2radian
81
 * \brief Convert degree to radian
82
 */
83
double nmea_degree2radian(double val)
84
{ return (val * NMEA_PI180); }
85
 
86
 
87
//------------------------------------------------------------------------------------------
88
nmeaPOS NMEApos;
89
nmeaPOS NMEATarget;
90
 
91
/**
92
 * \brief Horizontal move of point position
93
 */
94
int nmea_move_horz(
95
    const nmeaPOS *start_pos,   /**< Start position in radians */
96
    nmeaPOS *end_pos,           /**< Result position in radians */
97
    double azimuth,             /**< Azimuth (degree) [0, 359] */
98
    double distance             /**< Distance (km) */
99
    )
100
{
101
    nmeaPOS p1 = *start_pos;
102
    int RetVal = 1;
103
 
104
    distance /= NMEA_EARTHRADIUS_KM; /* Angular distance covered on earth's surface */
105
    azimuth = nmea_degree2radian(azimuth);
106
 
107
    end_pos->lat = asin( sin(p1.lat) * cos(distance) + cos(p1.lat) * sin(distance) * cos(azimuth));
108
 
109
    end_pos->lon = p1.lon + atan2( sin(azimuth) * sin(distance) * cos(p1.lat), cos(distance) - sin(p1.lat) * sin(end_pos->lat));
110
 
111
    if(NMEA_POSIX(isnan)(end_pos->lat) || NMEA_POSIX(isnan)(end_pos->lon))
112
    {
113
        end_pos->lat = 0; end_pos->lon = 0;
114
        RetVal = 0;
115
    }
116
 
117
    return RetVal;
118
}
119
 
120
 
2192 - 121
// Berechnet die Position der Kopters für FollowMeStep2
122
// Momentan wird die gleich Position ausgegeben
2136 - 123
 
2192 - 124
int followme_calculate_offset(
125
    const nmeaPOS *pkt_pos,     /**< Start position in radians */
126
    nmeaPOS *target_pos,        /**< Result position in radians */
127
    int d_lat,                  /**< Distance lat(m) */
128
    int d_lon                   /**< Distance long(m) */
129
    )
130
{
131
 
132
        // only for test the "Debug-Mode"
133
    target_pos->lat = pkt_pos->lat;
134
    target_pos->lon = pkt_pos->lon;
135
 
136
 
137
        return 1;
138
}
139
 
140
 
2136 - 141
//###############################################################################################
142
 
143
 
144
 
145
//--------------------------------------------------------------
146
GPS_PosDev_t gps_Deviation( GPS_Pos_t pos1, GPS_Pos_t pos2 )
147
{
148
    int32_t      lat1, lon1, lat2, lon2;
149
    int32_t      d1, dlat;
150
    GPS_PosDev_t PosDev;
151
 
152
    lon1 = pos1.Longitude;
153
    lat1 = pos1.Latitude;
154
 
155
    lon2 = pos2.Longitude;
156
    lat2 = pos2.Latitude;
157
 
158
    d1   = (1359 * (int32_t)(c_cos_8192((lat1 + lat2) / 20000000)) * ((lon1 - lon2)/10))/ 10000000;
159
    dlat = (1113 * (lat1 - lat2) / 10000);
160
 
161
    PosDev.Bearing  = (my_atan2(d1, dlat) + 540) % 360;         // 360 +180 besserer Vergleich mit MkCockpit
162
    PosDev.Distance = sqrt32( d1 * d1 + dlat * dlat );          //
163
    //PosDev.Distance = sqrt32( d1 * d1 + dlat * dlat ) * 10;       // *10 um von dm auf cm zu kommen
164
 
165
    return PosDev;
166
}
167
 
168
 
169
///**
170
// * \brief Calculate distance between two points
171
// * \return Distance in meters
172
// */
173
//int32_t nmea_distance(
174
//        const nmeaPOS *from_pos,    /**< From position in radians */
175
//        const nmeaPOS *to_pos       /**< To position in radians */
176
//        )
177
//{
178
//  int32_t dist = ((int32_t)NMEA_EARTHRADIUS_M) * acos(
179
//        sin(to_pos->lat) * sin(from_pos->lat) +
180
//        cos(to_pos->lat) * cos(from_pos->lat) * cos(to_pos->lon - from_pos->lon)
181
//        );
182
//    return dist;
183
//}
184
 
185
 
186
 
187
//// Berechnung von Distanz und Winkel aus GPS-Daten home(MK eingeschaltet)
188
//// zur aktuellen Position(nach Motorstart)
189
//geo_t calc_geo(HomePos_t *home, GPS_Pos_t *pos)
190
//{ double lat1, lon1, lat2, lon2, d1, dlat;
191
//        geo_t geo;
192
//
193
//        lon1 = MK_pos.Home_Lon;
194
//        lat1 = MK_pos.Home_Lat;
195
//        lon2 = (double)pos->Longitude   / 10000000.0;
196
//        lat2 = (double)pos->Latitude    / 10000000.0;
197
//
198
//        // Formel verwendet von http://www.kompf.de/gps/distcalc.html
199
//        // 111.3 km = Abstand zweier Breitenkreise und/oder zweier Längenkreise am Äquator
200
//        // es wird jedoch in Meter weiter gerechnet
201
//        d1       = 111300 * (double)cos((double)(lat1 + lat2) / 2 * DEG_TO_RAD) * (lon1 - lon2);
202
//        dlat = 111300 * (double)(lat1 - lat2);
203
//        // returns a value in metres http://www.kompf.de/gps/distcalc.html
204
//        geo.bearing = fmod((RAD_TO_DEG * (double)atan2(d1, dlat)) + 180, 360); // +180 besserer Vergleich mit MkCockpit
205
//        if (geo.bearing > 360) geo.bearing -= 360; // bekam schon Werte über 400
206
//        geo.distance = sqrt(d1 * d1 + dlat * dlat);
207
//        return(geo);
208
//}
209
 
210
// Berechnung von Distanz und Winkel aus GPS-Daten home(MK eingeschaltet)
211
// zur aktuellen Position(nach Motorstart)
212
//--------------------------------------------------------------
213
//--------------------------------------------------------------
214
 
215
/*
216
geo_t calc_geo( HomePos_t *home, GPS_Pos_t *pos )
217
{
218
    int32_t lat1, lon1, lat2, lon2;
219
        int32_t d1, dlat;
220
        geo_t geo;
221
 
222
        lon1 = home->Home_Lon;
223
        lat1 = home->Home_Lat;
224
        lon2 = pos->Longitude;
225
        lat2 = pos->Latitude;
226
 
227
        if( !CheckGPS )
228
        {
229
            writex_gpspos(  0, 3, home->Home_Lat , MNORMAL,  0,0);    // Anzeige: Breitengrad (Latitude)
230
            writex_gpspos( 11, 3, home->Home_Lon , MNORMAL,  0,0);    // Anzeige: Laengengrad (Longitude)
231
            writex_gpspos(  0, 4, pos->Latitude  , MNORMAL,  0,0);    // Anzeige: Breitengrad (Latitude)
232
            writex_gpspos( 11, 4, pos->Longitude , MNORMAL,  0,0);    // Anzeige: Laengengrad (Longitude)
233
 
234
            //lcd_puts_at (0, 3, my_itoa(home->Home_Lat, 10, 7, 7), 0);     // 30.05.2014 OG: my_itoa() gibt es nicht mehr
235
            //lcd_puts_at (11, 3, my_itoa(home->Home_Lon, 10, 7, 7), 0);    // 30.05.2014 OG: my_itoa() gibt es nicht mehr
236
            //lcd_puts_at (0, 4, my_itoa(pos->Latitude, 10, 7, 7), 0);      // 30.05.2014 OG: my_itoa() gibt es nicht mehr
237
            //lcd_puts_at (11, 4, my_itoa(pos->Longitude, 10, 7, 7), 0);    // 30.05.2014 OG: my_itoa() gibt es nicht mehr
238
        }
239
 
240
        // Formel verwendet von http://www.kompf.de/gps/distcalc.html
241
        // 111.3 km = Abstand zweier Breitenkreise und/oder zweier Langenkreise am Äquator
242
        // es wird jedoch in dm Meter weiter gerechnet
243
        // (tlon1 - tlon2)/10) sonst uint32_t-Ãœberlauf bei cos(0) gleich 1
244
        d1       = (1359 * (int32_t)(c_cos_8192((lat1 + lat2) / 20000000)) * ((lon1 - lon2)/10))/ 10000000;
245
        dlat = 1113 * (lat1 - lat2) / 10000;
246
        geo.bearing = (my_atan2(d1, dlat) + 540) % 360; // 360 +180 besserer Vergleich mit MkCockpit
247
        geo.distance = sqrt32(d1 * d1 + dlat * dlat);
248
        if( !CheckGPS )
249
        {
250
            lcd_printp_at (0, 5, PSTR("Bear:"), 0);
251
 
252
            lcdx_printf_at_P( 5, 5, MNORMAL, 0,0, PSTR("%3d"), geo.bearing );
253
            //lcd_puts_at (5, 5, my_itoa((uint32_t)geo.bearing, 3, 0, 0), 0);       // 30.05.2014 OG: my_itoa() gibt es nicht mehr
254
 
255
            lcd_printp_at (8, 5, PSTR("\x1e"), 0);
256
            lcd_printp_at (9, 5, PSTR("Dist:"), 0);
257
 
258
            lcdx_printf_at_P( 15, 5, MNORMAL, 0,0, PSTR("%3d"), geo.distance );
259
            //lcd_puts_at (15, 5, my_itoa((uint32_t)geo.distance, 3, 1, 1), 0);     // 30.05.2014 OG: my_itoa() gibt es nicht mehr
260
 
261
            lcd_printp_at (20, 5, PSTR("m"), 0);
262
        }
263
 
264
 
265
        return(geo);
266
}
267
*/
268